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The impact of Pleistocene climate changes substantially varied between tropical regions, resulting in striking
differences in angiosperm species richness caused by post-glacial recolonization delays. Tropical bryophytes,
which have been perceived as extremely good dispersers due to biased rates of monoecy and hence spore
production, differ strikingly from angiosperms in their similar patterns of species richness among tropical
regions. Here, we analyse the patterns of beta diversity of tropical bryophytes to determine whether their high
dispersal capacities have balanced patterns of species richness and erased any difference of post-glacial
recolonization patterns between tropical regions. The partitioning of beta diversity for 7485 tropical moss species
among 164 operational geographical units (OGUs) and 3276 liverwort and hornwort species in 154 OGUs
revealed a slight, but significantly higher beta diversity among than within tropical regions. The nestedness
component of beta diversity did not significantly differ between tropical regions. This indicates that, although
regional migration rates were sufficient to erase differences of the impact of Pleistocene climate changes between
tropical regions, the similar bryophyte species richness of tropical regions cannot be interpreted in terms of
unrestricted migrations and that oceans act as a barrier to routine dispersal, which is sufficient to shape large-
scale floristic patterns. © 2016 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016
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INTRODUCTION

The uneven distribution of species richness across
the globe has long been recognized a time ago, and
the latitudinal gradient of biodiversity that
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culminates in the profusion of the variety of life in
the equatorial tropics appears as one of the few truly
universal ecological rules (Mittelbach et al., 2007;
but see Mateo et al., 2016; and references therein).
Although tropical rain forests are renowned for high
species richness, this is neither uniformly distributed
nor is it always the case (Corlett & Primack, 2010).
For example, tropical Africa includes 32 400 angios-
perm species across around 22 million km2 (Klopper
et al., 2007) compared to 90 000 in 17.84 million km2

in the Neotropics (Raedig et al., 2010) and 42 000
species in 3 million km2 in Malesia (Linder, 2014).

The comparative biotic poverty in tropical Africa
has been interpreted as a result of extinctions caused
by historical climate shifts towards increasing
drought (Maley, 1996; Morley, 2000). All the tropical
regions of the world experienced severe vegetation
shifts during the glacial cycles of the Pleistocene,
with forest contractions during cold periods. The
recolonization of grasslands and savannas that pre-
vailed during the driest and coolest periods of the
Pleistocene has been challenged by the low dispersal
capacities of many rainforest species. While, in the
Neotropics, a few common tree species dominate
immense areas of forest (ter Steege et al., 2013) and
may even display transoceanic distributions follow-
ing long-distance dispersal (Dick et al., 2007), the
spatial aggregation of many woody tropical species,
characterized by low levels of anemochory, high
levels of zoochory and the production of large dias-
pores (Butler et al., 2007; Muscarella & Fleming,
2007; Beaune et al., 2013), reflects dispersal limita-
tions (Myers et al., 2013). Delays in the recoloniza-
tion of forest areas led to nested patterns (Midgley
et al., 2004) due to the fact that species assemblages
of the poorest sites are subsets of those of the richest
sites. African rainforests were, however, substan-
tially more impacted than Neotropical ones (Parmen-
tier et al., 2007; Kissling et al., 2012). In particular,
pollen and geochemical evidence suggests that, dur-
ing the last glacial maximum, the African rainforest
area was reduced by c. 84%, whereas the Amazon
humid forest area probably shrank to 54% of its pre-
sent-day extent (Anhuf et al., 2006). Extinction pro-
cesses are, furthermore, expected to be stronger in
Africa than in Amazonia because of the smaller Afri-
can rain forest area (c. 24 million ha in Africa vs.
668 million ha in Amazonia), resulting in smaller
population sizes, which in turn enhances extinction
risk (Parmentier et al., 2007).

Bryophytes offer an original model to address
questions concerning patterns of floristic diversity in
the tropics. In mosses, of which the 2109, 2583 and
2676 tropical African, Neotropical and tropical Asian
species contribute 32%, 39% and 41% of the global
tropical moss species pool, respectively (Geffert et al.,

2013), species richness patterns are much more bal-
anced among tropical regions than in angiosperms,
pointing to differences in the assembly mechanism of
tropical biota between the two groups. In fact, bryo-
phytes in general (Medina, Draper & Lara, 2011)
and tropical bryophytes in particular (Schuster,
1983) seem, in contrast to rainforest tree species,
especially well equipped for dispersal, so that niche
preference rather than dispersal limitation shapes
species distribution patterns (Mota de Oliveira et al.,
2009). Using null model analyses based on metacom-
munity concepts for Amazonian epiphytic bryophyte
communities, Mota de Oliveira & ter Steege (2015)
concluded that ‘long-distance dispersal of bryophytes
in the Amazon does not lead to geographical struc-
ture in species composition’. Lowland tropical bryo-
phytes have indeed been considered as ‘highly
specialized elements with higher than normal levels
of monoecism’ (Schuster, 1983). Such a departure of
the sexual systems of tropical mosses and liverworts
from the general patterns in these groups is expected
to have a substantial impact on their reproductive
success. Indeed, mosses and liverworts disperse by
specialized asexual diaspores and spores, which are
assumed to be involved in short- and long-distance
dispersal, respectively (Schuster, 1983). Spore pro-
duction is tightly linked to sexual systems because
sexual reproduction depends on sperm being able to
reach the ova by swimming through a continuous
film of water. In monoecious species, which represent
about one-third of all moss and liverwort species,
this functional constraint is weak, as the distance
between male and female sexual organs on the same
plant is minimal. Although it should not be assumed
that monoecious species are selfing simply because
the male and female gametangia are simultaneously
mature and although one case of self-incompatibility
was recently reported (Stark & Brinda, 2013),
monoecious bryophyte species are assumed to be cap-
able of self-fertilization, as evidenced by the high Fis
values observed in the sporophytic phase of all
monoecious species investigated so far (Hutsem�ekers,
Hardy & Vanderpoorten, 2013; Johnson & Shaw,
2015; Klips, 2015). In dioecious species, conversely,
the likelihood of fertilization is inversely proportional
to the distance between male and female plants. As
a result, sporophyte production is significantly lower
in dioecious than in monoecious species (Longton,
1997; Laaka-Lindberg, Hedderson & Longton, 2000).
Monoecious bryophyte species have therefore been
perceived as better dispersers than dioecious ones
(Schuster, 1983). However recent evidence suggests
that, in line with the high proportion of pantropical
species in the mostly dioecious family Calymper-
aceae, production of specialized asexual diaspores
contributes to long-distance dispersal (Laenen et al.,
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2016). This situation would explain why dioecious
species are filtered out along a gradient of geographi-
cal isolation, as shown by the balanced proportion of
monoecious and dioecious bryophyte species on ocea-
nic islands (Pati~no et al., 2013). Increased rates of
monoecy, combined with other traits such as preco-
cious germination of spores, while still in the cap-
sule, have led to the hypothesis that tropical
bryophytes are particularly well equipped for long-
distance dispersal and rapid and efficient establish-
ment (Schuster, 1983). A mechanism potentially trig-
gering high dispersal capacities in tropical
bryophytes is that, due to the accumulation of large
amounts of debris and low light intensities on the
forest floor, tropical bryophytes tend towards epi-
phytism, which would have been selective for short-
term life cycles and high dispersal capacities.

Here, we address the question of how the high
long-distance capacities of tropical bryophytes impact
on their global patterns of species diversity. More
specifically, we test the following hypotheses.
1. If the similar patterns of bryophyte species rich-

ness result from dynamic floristic interchanges
among tropical regions, we expect that the strong
environmental gradients that characterize tropi-
cal regions rather than geographical isolation
between regions shape their patterns of species
richness and, hence, that total beta diversity
between regions is not significantly higher than
within regions (Hypothesis 1).

2. If tropical bryophytes, unlike angiosperms, did
not experience delays in the recolonization of
areas that underwent severe vegetation shifts
during the last glacial cycles, we expect that,
despite the fact that sub-Saharan Africa was sub-
stantially more impacted than the Neotropics and
tropical Asia by historical climate change, sub-
Saharan African floristic assemblages are not sig-
nificantly more nested than those of the two other
tropical regions (Hypothesis 2).

MATERIAL AND METHODS

FLORISTIC DATA

Tropical areas were defined according to the tradi-
tional latitudinal limits of 23.5 degrees, but followed
some modifications by Condamine et al. (2012) so
that tropical areas included sub-Saharan Africa,
Madagascar, the Neotropics, southern India (includ-
ing Sri Lanka), the Malayan region (i.e. southern
China, Malaysian Peninsula and Indochina) and
Australasia (including northern Australia, Melane-
sian Islands, Papua New Guinea and Wallacea).
Focusing on the tropical areas, we partitioned the

data into the Neotropics, sub-Saharan tropical Africa
and tropical Asia.

For mosses, information on the distribution of
7485 tropical species among 164 operational geo-
graphical units (hereafter, OGUs) was retrieved from
Geffert et al. (2013). For liverworts, the most com-
prehensive database of species distributions available
to date, which has been built in the context of the
Early Land Plants Today project (von Konrat, S€oder-
str€om & Hagborg, 2010), was employed to document
the distribution of 3276 liverwort species, keeping
only verified species names (S€oderstr€om et al., 2016),
at the level of 154 tropical OGUs worldwide. Horn-
worts should, for consistency, have been analysed
separately. They are, however, a small group of
c. 150 species the diversity of which pales in compar-
ison with liverworts (6000 species) and mosses
(10 000 species). The number of hornwort species in
our data set did not warrant separate analyses
(1–3% of the total liverwort number depending on the
tropical region), and since hornworts exhibit a suite of
functional vegetative traits and ecological features
that are similar to those of liverworts, the data from
the two groups weremerged (hereafter, liverworts).

The liverwort data set, provided in Supporting
Information (Appendix S1), is derived from a pool of
resources and cross-referencing, involving a combina-
tion of species checklists, annotated checklists with
synonyms, monographs, revisions, specialist and
broad taxonomic papers. The present working data
sets includes: a bibliography of 13 500 publications;
c. 35 000 published liverwort names (including
‘accepted’ taxa, infraspecific ranks, synonyms, invalid
and illegitimate names); > 400 000 geographical
observations (a single observation is a record of one
taxon from one OGU); and almost 500 geo-political
units (e.g. state, province, country). As a more speci-
fic example, > 3500 journal articles and monographs
have been used so far as input for this data.

DATA ANALYSIS

To test Hypothesis 1, we computed total beta diver-
sity (Jaccard dissimilarity, bjac) within and among
tropical regions (Neotropics, tropical Africa and trop-
ical Asia). Multiple-site dissimilarities were com-
puted 100 times for randomly sampled subsets of 20
OGUs from the original pool of each region to evalu-
ate how bjac varies within each tropical region. Sec-
ond, we calculated multiple-site dissimilarities
computed 100 times for randomly sampled subsets of
20 OGUs, ten of which were sampled from each of
two continents, to determine how dissimilarities in
bjac vary between pairs of regions. The significance of
the within-continent and between-continent differ-
ences in bjac was estimated as the degree of overlap
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between the parameter distributions estimated
through the bootstrapping with replacement proce-
dure mentioned above. The rationale of these
analyses is that if beta diversity were driven by
within-continent environmental variation, then the
inclusion of OGUs from different continents (among-
continents analyses) would not increase beta diver-
sity compared to the within-continent analyses.

To test Hypothesis 2, we partitioned total beta
diversity (bjac) into contributions by turnover (bjtu)
and nestedness-driven dissimilarity (bjne) following
Baselga (2010, 2012) and Baselga & Leprieur (2015).
Nestedness occurs when the biotas of sites with
smaller numbers of species are subsets of the biotas
at richer sites. Spatial turnover is the replacement of
some species by others as a consequence of environ-
mental sorting or spatial and historical constraints
(Baselga, 2010). In the first case (nestedness), total
diversity would just be equal to that of the richest
local assemblage, whereas in the second case (spatial
turnover), total diversity would be the result of pool-
ing the different local assemblages and thus be
higher than that of any local assemblage. Due to the
coarse grain size of our OGUs, we expect to observe

high and similar levels of species turnover across
tropical regions. However, if, as palaeontological evi-
dence suggests, vegetation shifts were substantially
more severe in tropical Africa than in the two other
tropical regions, we expect that the nestedness com-
ponent of beta diversity is significantly higher in
tropical Africa than in tropical Asia and in the
Neotropics. All computations were performed in R (R
Core Team, 2013) using the package ‘betapart’ 1.3
(Baselga & Orme, 2012).

RESULTS

Total beta diversity (bjac) among OGUs was higher
between than within continents (Fig. 1; Table 1). In
both moss and liverwort floras, bjac in the Neotropics
was from marginally to significantly lower than in
Neotropical-tropical Asia and Neotropical-sub-
Saharan Africa comparisons. bjac in mosses was sig-
nificantly lower in tropical Asia than in tropical
Asia-Neotropical and tropical Asia-sub-Saharan
Africa comparisons. For liverworts, these differences
were only marginally significant (Table 1). In both

Figure 1. Comparison of total beta diversity (bjac) in mosses (A) and liverworts (B) among OGUs within and among

tropical regions, respectively.
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moss and liverwort floras, there were no significant
differences in bjac in sub-Saharan Africa in compar-
ison with tropical Africa-Asia and tropical Africa-
Neotropics.

Within tropical regions, the species turnover
component of beta diversity (bjtu) was systematically
higher than nestedness-driven dissimilarity (bjne;
Fig. 2). bjac (Fig. 1), bjtu and bjne (Fig. 2) among
OGUs within tropical regions were similar in sub-
Saharan Africa, the Neotropics and Asia. However,
bjac in mosses among OGUs in sub-Saharan Africa

was marginally higher than bjac among OGUs in the
Neotropics (P = 0.05) and in tropical Asia (P = 0.07)
(Table 2).

DISCUSSION

The analyses presented here are among the first to
describe the spatial structuring of bryophyte commu-
nities at a large scale (see Aranda et al., 2013; Mateo
et al., 2016), but intimately depend on the limita-
tions in our knowledge of species identities (the Lin-
nean shortfall) and distributions (the Wallacean
shortfall) (Diniz-Filho et al., 2013). This issue, which
is already present for well known taxa like angios-
perms in well known areas like Europe (Pet�r�ık, Pergl
& Wild, 2010), is particularly pronounced in tropical
areas (K€uper et al., 2006) and culminates in organ-
isms with reduced morphologies and, hence, uncer-
tain taxonomy like bryophytes (Vanderpoorten &
Shaw, 2010). During the period of active bryological
exploration of extra-European regions during the
19th century indeed, hundreds of new ‘geographical
species’ were described based in large part on the
assumption that populations from distant regions
must represent species distinct from familiar Euro-
pean taxa (Shaw, 2001) and also because many spe-
cies were described by taxonomists who could not
have at that time a worldwide vision of their group
of interest, resulting in an overestimation of local
endemics. In this context, O’Shea (1997a, b)

Table 1. Significance tests (P-value) for the difference in

total moss and liverwort beta diversity (bjac) within vs.

between tropical sub-Saharan Africa (Africa), the

Neotropics and tropical Asia (Asia; see Fig. 1)

Moss

bjac

Liverwort

bjac

Within Africa vs.

between Africa–Asia
0.15 0.13

Within Africa vs. between

Africa–Neotropics

0.38 0.15

Within Asia vs. among Asia–Africa 0.03 0.05

Within Asia vs.

among Asia–Neotropics

0.05 0.06

Within Neotropics vs. among

Neotropics–Africa
0.05 0.03

Within Neotropics vs. among

Neotropics–Asia
0.04 0.01

A

B

C

D

Figure 2. Partitioning of total beta diversity in tropical mosses (A, C) and liverworts (B, D) into its species turnover

(bjtu) and nestedness (bjne) components within each of the three continental regions considered (America, Asia and

Africa).
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predicted an overall reduction of 77% of endemism to
c. 43% of the existing list of mosses for Africa. Such
an overestimation of local endemism is likely to lead
to an overestimation of beta diversity. There are also
substantial floristic gaps in the Neotropics, e.g. the
Pacific coastal region of north-western South Amer-
ica, Peru, the tepuis of the Guayana Highland (Grad-
stein, Churchill & Salazar, 2001) and large tracts of
the driest areas (Germano, Silva & Peralta, 2016).
Nevertheless, the global similarity of the patterns
independently observed in mosses and liverworts
suggest that, despite the limitations of the data, the
patterns observed are robust.

Thus, and as opposed to our primary hypothesis,
total beta diversity of mosses and liverworts was
slightly, but in the Neotropics and Asia significantly,
higher between than within tropical regions. This
situation suggests that the similar moss and liver-
wort species richness between tropical areas as com-
pared with angiosperms cannot be interpreted in
terms of unrestricted migrations among tropical
regions and indicates that, although instances of
transoceanic dispersal among tropical regions have
been recurrently inferred from species-level phyloge-
netic analyses (Heinrichs et al., 2005, 2009;
Hentschel et al., 2007), oceans act as a barrier to
routine dispersal. This barrier, which is further
reflected by the strong geographical structure among
tropical regions found in phylogenetic analyses of
tropical bryophyte genera (Dong et al., 2012; Câmara
& Shaw, 2013; Aranda et al., 2014; Scheben et al.,
2016), is sufficient to shape substantial large-scale
floristic differences. This result, combined with the
higher levels of species turnover reported among
tropical pleurocarpous moss assemblages as com-
pared to extra-tropical ones (Heden€as, 2007), is at

odds with the hypothesis that tropical bryophytes
are better dispersers than extra-tropical ones based
on their syndromes for high long-distance dispersal
capacities (Schuster, 1983). Two reasons might
explain why Schuster’s hypothesis is not supported
here. First, Schuster (1983) assumed that monoe-
cious species, which prevail in the lowland tropical
bryophyte flora, are better dispersers than dioecious
ones. Such an assumption was, however, challenged
by correlation analyses between sexual systems and
distribution ranges (Laenen et al., 2016). Second,
Schuster’s assumption was largely based on the
observation that a large proportion of tropical species
are shared among tropical areas. Bryophyte species
indeed globally tend to exhibit larger distribution
ranges than angiosperms (Shaw, 2001). For instance,
144 liverwort species, representing about 10% of the
Neotropical flora and 16% of the flora of tropical
Africa, are shared between South America and sub-
Saharan Africa (Gradstein, 2013). Although molecu-
lar data in some instances confirmed the conspeci-
ficity of highly disjunct bryophyte populations (e.g.
Lewis, Rozzi & Goffinet, 2014; Pati~no et al., 2016;
Vigalondo et al., 2016), mounting evidence suggests,
however, that many of those widespread bryophyte
species in fact correspond to complexes of species
that are not necessarily monophyletic and exhibit
much narrower distributions (Hutsem�ekers et al.,
2012; Medina et al., 2012, 2013; Heden€as et al.,
2014; Heinrichs et al., 2015; Pati~no & Vander-
poorten, 2015; Scheben et al., 2016).

Despite evidence for long-distance dispersal limita-
tions among tropical regions in the world moss and liv-
erwort floras, but in line with our second hypothesis,
Neotropical, tropical African and tropical Asia moss
and liverwort assemblages exhibited similar patterns
of nestedness. This finding suggests that, although
vegetation shifts were much more dramatic in tropical
Africa than in tropical Asia and in the Neotropics dur-
ing the glacial cycles of the Pleistocene, the high dis-
persal capacities of tropical bryophytes at the regional
scale (Mota de Oliveira & ter Steege, 2015) have been
sufficient to erase any difference that would have
resulted from recolonization delays.

CONCLUSIONS

Although tropical bryophytes displayed a high capac-
ity to recolonize efficiently areas exposed to substan-
tial vegetation shifts during the Pleistocene, our
results are not consistent with the hypothesis that
the similar patterns of species richness observed
among tropical bryophyte floras are due to the shar-
ing of a common pool of species with high dispersal
capacities. Instead, this study suggests that tropical

Table 2. Significance tests (P-value) for the pairwise

comparisons of total beta diversity (bjac; Fig. 1), species

beta turnover (bjtu; Fig. 2) and species beta nestedness

(bjne; Fig. 2) among OGUs in mosses and liverworts

within the Neotropics, tropical sub-Saharan Africa and

tropical Asia.

Africa–
Neotropics

Asia–
9Neotropics Africa–Asia

Total beta diversity (bjac)
Mosses 0.05 0.36 0.07

Liverworts 0.40 0.16 0.74

Turnover beta diversity (bjtu)
Mosses 0.71 0.74 0.84

Liverworts 0.46 0.32 0.63

Nestedness beta diversity (bjne)
Mosses 0.39 0.31 0.28

Liverworts 0.56 0.54 0.56
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bryophyte floras evolved independently, but at a sim-
ilar rate across tropical areas, and opens the door to
further research to determine whether, like angios-
perms (Kissling et al., 2012), regional bryophyte
assemblages exhibit a significant phylogenetic clus-
tering in the different tropical regions of the world.
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