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A B S T R A C T   

Distance-decay models fit parametric functions to assess the relationship between similarity and spatial or 
environmental distance. Despite the widespread use of distance-decay models in ecology and biogeography, no 
method has been previously developed and validated to assess the significance of differences between the pa
rameters (i.e. intercept and slope) of two distance-decay models. The pairwise autocorrelation of similarity and 
spatial distance affects the variance of parameter estimates, precluding the use of ordinary t-tests. Here, we 
provide a test statistic (zdep) for the equality of parameters between two distance-decay models. The test can be 
applied, independently, to any of the model parameters (i.e. intercept and/or slopes). The zdep statistic accounts 
for pairwise dependence, thus avoiding biases associated to the inflation of degrees of freedom, and it is based on 
the estimation of parameters' variance using site-block resampling. To validate the zdep statistic, type I and type II 
errors were empirically evaluated through a simulation study. We simulated six scenarios (three under the null 
and three under the alternative hypothesis) of distance-decay relationships using different functions: negative 
exponential, power-law or Gompertz function. We applied the zdep statistic and computed the proportion of 
rejections of the null hypothesis for α = 0.01, 0.05 and 0.1 in each scenario. As a case-study, we also compared 
distance-decay parameters across several groups of Iberian vertebrates (cyprinids, frogs, lizards and snakes, bats, 
rodents and carnivores). In the simulation study, the zdep statistic showed a good approximation of the nominal 
level (α, type I error) and a good statistical power (1 − type II error), the later increasing with sample size, as 
expected. In Iberian vertebrates, we found significant differences between ectotherms and endotherms, but not 
within these groups except between cyprinids and other ectotherms. The good performance of the zdep statistic 
makes it the best option to test for differences in parameters obtained from models fitted from data with pairwise 
dependence, as distance-decay models. It can also be used beyond distance-decay approaches to compare pa
rameters of any other regression models of pairwise dependent data (as genetic distances, for example).   

1. Introduction 

The distance-decay of similarity (i.e. the decrease of community 
similarity with spatial/environmental distance) is a ubiquitous macro
ecological pattern (Graco-Roza et al., 2022; Nekola and White, 1999; 
Soininen et al., 2007) that results from the interplay between environ
mental attributes of the study area and the organisms' dispersal ability 
and ecological requirements (Morlon et al., 2008; Steinbauer et al., 
2012). Distance-decay models are a common approach to analyse the 
spatial variation of community composition (β-diversity), by assessing 

the relationship between two pairwise matrices: community similarity 
and spatial distance. In fact, the shape and slope of such distance-decay 
relationship can be used to infer the strength of the processes driving the 
spatial structure of biodiversity patterns, such as environmental filtering 
and dispersal limitation (Baselga and Gómez-Rodríguez, 2021; Gómez- 
Rodríguez and Baselga, 2018; Soininen et al., 2007). Moreover, a com
parison of distance-decay model parameters (i.e. intercept and slope) 
across biological groups has proven effective to evidence differences in 
the role of dispersal limitation within the same geographical context (e. 
g., Gómez-Rodríguez and Baselga, 2018). However, such comparison of 
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distance-decay parameters is not straightforward because the variance 
of parameter estimates is affected by the fact that both variables, i.e. 
community similarity and spatial distance, are pairwise autocorrelated 
(i.e. similarity and distance values are the result of the comparison of 
two biological communities), and hence their values cannot be consid
ered independent (Smouse et al., 1986). While the bias introduced by 
pairwise autocorrelation has been accounted for in some significance 
tests (e.g., Mantel test), a statistical test for parameter comparison, 
equivalent to the t-test, has not been developed in a multivariate 
context. 

Various methods have been developed to study the relationship be
tween community similarity and spatial or environmental distances, 
including semi-variograms (Cressie, 1993), linear regressions (Nekola 
and White, 1999), or generalised dissimilarity models based on spline 
regressions (Ferrier et al., 2002, 2007). However, the most widely used 
methods are (i) the Mantel and partial Mantel tests (Mantel, 1967; 
Mantel and Valand, 1970; Smouse et al., 1986), which compute the 
correlation between two distance (or dissimilarity) matrices, and (ii) 
non-linear regressions, which fit parametric functions, such as the 
power-law or the negative exponential, to distance-decay data (Nekola 
and McGill, 2014). Mantel tests have been specifically developed to 
assess the correlation between distance and/or dissimilarity matrices, 
and hence are not biased by the structure of distance data. However, its 
lack of parameters precludes the ecological interpretation of the rela
tionship. On the contrary, in regression-based distance-decay models, 
the intercept can be interpreted as the expected community similarity at 
short distances while the slope is the rate at which communities change 
with distance (Soininen et al., 2007). Therefore, to compare the pa
rameters of two distance-decay models, we need a statistical test that 
accounts for the pairwise autocorrelation of distance-decay data. 

Pairwise autocorrelation arises because both community similarity 
and spatial or environmental distances are computed by comparing the 
data observed in two different sites. Thus, each value in a similarity/ 
distance matrix involves two observations (i.e. sites) and each of these 
observations participates in the computation of more than one of the 
similarity/distance values (Diserud and Ødegaard, 2007; Smouse et al., 
1986). In other words, from N sites we compute (N*N-1)/2 pairwise 
similarities, so the number of similarity values is larger than the number 
of independent community observations. This causes the inflation of 
degrees of freedom (Koenig, 1999) because one value in the similarity 
matrix does not represent a complete degree of freedom (Dale and 
Fortin, 2002; Legendre, 1993) (Fig. 1). The inflation of degrees of 
freedom biases ordinary significance tests, as the F-test, but this bias has 
been accounted for in tests specifically developed for similarity/distance 
data. For example, the Mantel test uses permutations to compute the null 
distribution of the correlation between similarity and distance, thus 
taking into account pairwise dependence (Koenig, 1999). Beyond cor
relation, a significance test based on the deviance of non-linear regres
sion models has been recently developed, which uses permutations or 
site-block resampling to deal with pairwise autocorrelation (Martínez- 
Santalla et al., 2022). Moreover, and in order to compare the parameters 
of two distance-decay models, different alternatives have been also used 
based on permutations or bootstrap (Gómez-Rodríguez and Baselga, 
2018; Nekola and White, 1999). However, previous solutions were 
suboptimal because the resampling procedures did not account for the 
pairwise dependence of the data. From a practical standpoint, the 
inflation of degrees of freedom biases the comparison of regression pa
rameters by increasing the rate of false positives (e.g., reporting signif
icant differences in distance-decay parameters when they are not 
different, inflating Type I error) (Legendre, 1993; Legendre and Fortin, 
1989). To overcome this problem, we have designed a specific test to 
compare the parameters of distance-decay models while controlling for 
pairwise autocorrelation. 

Here we introduce and evaluate a novel statistic to independently 
test for the equality of individual parameters of distance-decay models 
while accounting for the pairwise dependence of the data. This test 

statistic (zdep) is based on the standardised difference of the estimated 
parameters, analogous to a t-test in the sense that the difference between 
the estimated parameters is divided by the corresponding standard 
deviation, 

zdep =
θ̂1 − θ̂2

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

var(θ̂1) + var(θ̂2) − cov(θ̂1, θ̂2)

√ (1)  

where θ1and θ2 are the parameters to compare and θ̂1 and θ̂2 the cor
responding sample estimates. Note that the test is applied to each 
parameter independently, so a test can be run to assess the difference 
between intercepts of two distance-decay models (θa1 vs. θa2), and a 
different test to assess the difference between their slopes (θb1 vs. θb2). 
Also note that the test statistic in (1) is based on the asymptotically 
normal distribution of each parameter estimate, so zdep is a standardi
zation of the estimates difference. In addition, in contrast to an ordinary 
t-test, the variance in parameter estimation is computed using block- 
bootstrap techniques (Kunsch, 1989; Liu et al., 1992) to avoid bias 
due to the pairwise dependence of similarity indices and distance 
measures. Block-bootstrap techniques are based on defining the sam
pling unit as a set of values that present a certain degree of correlation, 
what is called a block, to mimic the dependence structure of the original 
data (Lahiri, 1999). In our case of pairwise dependent data, we define a 
block as the set of values obtained from the comparison of one site with 
all the others, thus capturing their pairwise dependence structure 
(Martínez-Santalla et al., 2022). In this case, from N sites N blocks are 
computed (Fig. 1) avoiding the inflation of degrees of freedom, as the 

Fig. 1. a) Example showing how pairwise dependence of similarity/distance 
values results in pseudoreplication and hence the inflation of degrees of 
freedom. The effective size of the data (N = 4) is less than the number of values 
in the similarity/distance matrix (n = 6). Alternatively, in the site-block con
struction, the effective size of the data (N = 4) and the number or similarity site- 
blocks (b = 4) are the same, thus avoiding the inflation of degrees of freedom, 
while keeping the pairwise structure of data. b) Increase with sample size of the 
disparity between the number of sites or site-blocks and the number of simi
larities/distance values. 
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number of blocks is the same as the number of sites. If we consider the 
block as the sampling unit for the bootstrap procedure, we ensure that 
the effective size of the data (N) is equal to the number of observations 
(N) and, therefore, we avoid inflation-driven biases in the estimation of 
the variance of parameters. 

The site-block resampling procedure we used to estimate the vari
ance of distance-decay model parameters follows the same approach as 
used by Martínez-Santalla et al. (2022) for a significance test of distance- 
decay models. In short, resamples of site-blocks (i.e. all similarities or 
distances involving a given site) are taken with replacement and saved 
to a similarity block matrix. First, for N sites, N site-blocks are defined by 
selecting the similarity and distance values involving a given site. These 
N blocks are saved as columns of two block matrices, one for similarities 
and another for distances. Second, N block resamples (columns of block 
matrices) are drawn with replacement, ensuring that the same blocks are 
sampled for both similarities and distances, and then saved as two 
resample matrices. Third, resample matrices are initially built with 
duplicate observations (N * [N− 1] values) because each block includes 
N - 1 values. In this step, the resample matrices are downsized to the 
original size of the similarity and distance matrices (N * [N - 1] / 2 
values), by sampling N * [N - 1] / 2 values from both resample matrices. 
These values are saved as similarity and distance resample vectors, that 
will be used to fit the nonlinear distance-decay models and to estimate 
the model parameters (θ1and θ2). Fourth, steps 1 to 3 are repeated B 
times, and B parameter estimates are saved in two vectors, one for θ1, 
and another θ2. Fifth, the variance of each parameter, and their 
covariance, are computed from the vectors of B parameter values. 

To evaluate the performance of this approach in the estimation of the 
parameters' variance and hence the adequacy of the zdep statistic, we 
conducted a calibration study based on simulations to assess whether the 
zdep statistic is effective in independently detecting differences in indi
vidual distance-decay parameters (i.e. either for the intercepts or for the 
slopes, or for both). This was done by assessing the proportion of false 
positives (type I error, i.e. significant p-value when distance-decay 
curves were simulated with the same dataset, that is, under the null 
hypothesis of no differences between distance-decay model parameters) 
and the proportion of false negatives (type II error; i.e. non-significant p- 
value when simulated distance-decay curves parameters were different). 
In order to assess if there is a significant difference between two pa
rameters (for example, between two intercepts or between two slopes), 
and therefore, to conclude if the null hypothesis (e.g. both distance- 
decay slopes are identical) should be rejected or not, it is necessary to 
estimate the distribution of the zdep statistic under the null hypothesis, 
and to obtain the associated p-value. In our case, as the zdep statistic is 
the standardised difference of parameters, under the null hypothesis, in 
which θ1and θ2 are assumed to be equal, the statistic zdep follows a N(0,1) 
distribution. This is because the distribution of the estimators is 
asymptotically normal, and the linear combination of normal distribu
tions is also normal. In this case, because the zdep statistic is a stan
dardization, it follows a N(0,1). 

A non-biased comparison of distance-decay parameters, such as the 
one provided by the novel zdep test, can be widely applied in biogeo
graphical, ecological and macroecological studies, as evidenced by the 
variety of studies that have previously sought for analogous analyses. 
For example, a comparison of distance-decay parameters has been used 
to assess the differences in distance-decay rates between ecosystems and 
across scales in fungi (Bahram et al., 2013), between different hosts in 
parasite communities (Thieltges et al., 2009), between different types of 
organisms like macro and microinvertebrates (Astorga et al., 2012) or 
ectotherms and endotherms (Qian and Ricklefs, 2012), between native 
and non-native species of urban floras (La Sorte et al., 2008), to assess 
the effects of eutrophication in diatom communities (Goldenberg Vilar 
et al., 2014) or to compare how grain size and the study extent affects 
the form of the distance-decay curves (Steinbauer et al., 2012). More
over, beta diversity and distance-decay studies are informative for 
biodiversity conservation strategies and environment management 

(Gossner et al., 2016; Graco-Roza et al., 2022). 
In this paper, we introduce the novel zdep statistic to test for the 

equality of individual parameters between two distance-decay models 
and exemplify its use with distribution data of vertebrates in the Iberian 
Peninsula. The main novelty of this approach is the incorporation of an 
effective method (i.e. site-block resampling) to avoid the inflation of 
degrees of freedom in a t-test like statistic, and the performance of a 
calibration study. First, we performed a simulation study to analyse the 
empirical behaviour of the zdep statistic, evaluating its type I and type II 
errors. For this purpose, we have simulated three scenarios where 
distance-decay parameters were equal (null hypothesis holds) and three 
scenarios where the distance-decay parameters were different (alterna
tive hypotheses). This design allows studying the performance of the zdep 
test with different distance-decay functional forms (i.e. negative expo
nential, power-law and Gompertz) and in different situations (similar 
intercept but different slope, different intercept but similar slope, 
different intercept and slope). Negative exponential and power-law 
models have been frequently used for distance-decay analyses (Nekola 
and McGill, 2014), and recently the Gompertz model has been intro
duced as alternative for sigmoidal distance-decay patterns (Martín- 
Devasa et al., 2022). Finally, we provide a case-study, applying the zdep 
statistic to compare distance-decay parameters across several Iberian 
vertebrate groups (freshwater fishes, frogs, lizards and snakes, bats, 
rodents and carnivores). 

2. Material and methods 

2.1. Simulation of virtual biological communities 

We performed a simulation study to assess the type I and type II 
errors of the zdeptest. We simulated 300 species' ranges (“virtual regional 
pool”) as circular spatial polygons in a virtual landscape of 3000 × 3000 
units. Polygons differed in diameter, as we would expect in species with 
different dispersal ability and niche breadth, and its centre was allocated 
randomly into the virtual landscape. As shown by Martín-Devasa et al. 
(2022), the shape of the distance-decay patterns varies with (i) the size 
of species ranges, and (ii) the proportion of restricted vs. widespread 
species. Therefore, to simulate distance-decay curves with different 
slopes and intercepts, we varied (i) the diameter of polygons repre
senting species ranges and (ii) the proportion of two range size classes 
(restricted vs. widespread) in several simulation scenarios (see below). 
Once virtual species ranges were distributed across the landscape, we 
randomly allocated sampling sites, each representing a “virtual local 
community”. The presence/absence of species in such virtual local 
communities was computed from the intersection of species ranges (i.e. 
circular spatial polygons) at each sampling site. For each virtual land
scape, we used two sets of random sampling sites, one set with 25 and 
the other set with 50 sites, to assess how sample size may affect the type I 
and type II errors of the test. We performed these simulations using the R 
packages “sp” (Bivand et al., 2013; Pebesma and Bivand, 2005) and 
“rgeos” (Bivand and Rundel, 2020). Finally, we measured community 
similarity between sampling sites using Simpson's pairwise similarity 
index (Baselga, 2010) with the beta.pair function of the R “betapart” 
package (Baselga and Orme, 2012), as well as the Euclidean spatial 
distance between them. These similarity and spatial distance matrices 
are the simulated data used in downstream distance-decay analyses. 

2.2. Simulation scenarios for hypothesis testing 

2.2.1. Null hypothesis 
We defined our null hypothesis as the equality of a given parameter 

(intercept or slope) between two distance-decay models. In this case, we 
simulated the two parameters being equal between both models. To do 
so, we simulated one virtual regional pool and a single set of virtual local 
communities, from which we computed one similarity matrix and one 
spatial distance matrix. To build two distance-decay curves with equal 
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parameters, it is necessary to obtain two bootstrap samples from the 
same similarity/distance matrices to ensure that both curves followed 
the same model. Besides, to preserve the pairwise structure of the 
distance-decay data in the two samples, we performed a site-block 
resampling of similarity/distance values, with site-blocks defined as 
the set of values derived from the same observation (Martínez-Santalla 
et al., 2022). In sum, the two distance-decay models were created by 
site-block resampling the initial simulated similarities and distances. 

Three scenarios were designed to study the performance of the zdep 
statistic under the null hypothesis:  

• Scenario #1: It consisted of 20 widespread species that occupied all 
the territory, with polygon diameters sampled from a uniform dis
tribution U [4000, 6000], and 280 spatially-restricted species with 
polygon diameters sampled from a U [300, 900]. This scenario is 
designed to simulate a distance-decay curve with rapid initial decay 
and incomplete turnover (Fig. 2).  

• Scenario #2: It consisted of 20 widespread species that did not 
occupy all the territory, with polygon diameters sampled from a U 
[3000, 4000], and 280 spatially-restricted species with polygon di
ameters sampled from a U [600, 1200]. This scenario is designed to 
simulate a distance-decay curve with a decrease of similarity values 
from the shortest distances, resulting in complete turnover at large 
distances and therefore values of zero similarity between very distant 
sites (Fig. 2).  

• Scenario #3: It consisted of 50 widespread species that did not 
occupy all the territory, with polygon diameters sampled from a U 
[3000, 4000], and 250 spatially-restricted species with polygon di
ameters sampled from a U [1500, 2000]. This scenario is designed to 

simulate a distance-decay curve with high similarity at short spatial 
distances and a marked decay from medium to large distances 
(Fig. 2). 

2.2.2. Alternative hypothesis 
The alternative hypothesis states that the parameters of two 

distance-decay models (i.e. intercept or slope) are different. In each 
scenario, we simulated two different virtual communities and, using the 
same set of sampling sites, we obtained two different similarity matrices 
and a spatial distance matrix. Thus, we obtained two datasets by 
combining each similarity matrix with the spatial distance matrix. Then, 
we computed the distance-decay model for each dataset. Simulating two 
different datasets, named DS1 and DS2, ensures that their distance-decay 
curves are also different. 

Three scenarios were designed to study the performance of the zdep 
statistic under the alternative hypothesis:  

• Scenario #4: DS1- It consisted of 300 species with polygon diameters 
sampled from a U [3000, 4000]. DS2- It consisted of 200 widespread 
species with polygon diameters sampled from a U [4000, 6000] and 
100 spatially-restricted species with polygon diameters sampled 
from a U [3000, 4000]. This scenario is designed to simulate 
distance-decay curves with different decay rates and similar, but not 
identical, initial similarity (Fig. 2).  

• Scenario #5: DS1- It consisted of 20 widespread species with polygon 
diameters sampled from a U [4000, 6000] and 280 spatially- 
restricted species with polygon diameters sampled from a U [1500, 
2000]. DS2- It consisted of 20 widespread species with polygon di
ameters sampled from a U [3000, 4000] and 280 spatially-restricted 

Fig. 2. Example of distance-decay simulations for the calibration of the zdep statistic under the null (top row) and alternative (bottom row) hypotheses with 50 
sampling points. Colours (red and blue) represent the two datasets to compare. For the null hypotheses, each dataset was obtained using site-block resampling from a 
single similarity and distance matrix. Curves represent the adjustment of the model that best fit the data, as detailed in Table 1. In scenario #6, where different 
models were selected for each dataset, continuous lines represent an exponential model and dashed lines a Gompertz model. Each curve is described by two pa
rameters (θa and θb, e.g., the intercept and slope of a negative exponential model, respectively), so the zdep test can be used to compare any of them between two 
datasets (i.e. θa1 vs. θa2, and/or θb1 vs. θb2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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species with polygon diameters sampled from a U [200,1200]. This 
scenario is designed to simulate distance-decay curves with similar, 
but not identical, decay rates and different initial similarity (Fig. 2).  

• Scenario #6: DS1- It consisted of 200 widespread species with 
polygon diameters sampled from a U [4000, 6000] and 100 spatially- 
restricted species with polygon diameters sampled from a U [3000, 
4000]. DS2- It consisted of 20 widespread species with polygon di
ameters sampled from a U [3000, 4000] and 280 spatially-restricted 
species with polygon diameters sampled from a U [600,1600]. This 
scenario is designed to simulate distance-decay curves with different 
initial similarity and decay rates (Fig. 2). 

2.3. Distance-decay models 

We performed non-linear regressions of pairwise community simi
larities over spatial distances to compute distance-decay models. We fit a 
negative exponential, a power-law and a Gompertz function using the 
nlsLM function of the “minpack.lm” package (Elzhov et al., 2016). We 
selected the model with the best fit based on their AIC. In the scenarios 
under the alternative hypothesis, when a different model was selected 
for each dataset (DS1 and DS2), we compared the parameters in both 
types of models. Model parameters were the intercept and slope in the 
case of negative exponential and power-law functions, and the position 
parameter and slope in the case of the Gompertz function (Martín- 
Devasa et al., 2022). 

2.4. zdep: Calibration procedure 

Type I error (rejecting the null hypothesis when it is true) was 
evaluated by applying the zdep statistic in 1000 simulations of the null 
hypothesis scenario, thus obtaining 1000 p-values, and computing the 
proportion of them being less than the nominal values of α (either α =
0.1, α = 0.05 and α = 0.01), i.e. proportion of rejections under the null 
hypothesis. These α values were chosen because they are the most 
commonly used significance levels. 

The type II error (not rejecting the null hypothesis when it is false) 
was evaluated with a similar procedure but, in this case, applying the 
zdep statistic in 1000 simulations of the alternative hypothesis scenario. 
This provides the empirical proportion of rejections under the alterna
tive hypotheses, i.e. the statistical power of the test (1-type II error). 
Under the null hypothesis, the proportion of rejections should be very 
similar to the significance levels (α), indicating that the type I error is the 
one assumed for each selected significance level. Under the alternative 
hypothesis, the test should have a proportion of rejections close to 1 
(maximum power), which would indicate that the null hypothesis has 
been rejected in all cases. The procedure followed for this calibration 
can be found in Appendix A. 

2.5. Application of the zdep to real data 

We applied the zdep statistic to assess independently the difference in 
initial similarity (intercept) and in the rate of species turnover (slope) 
among distance-decay models of several vertebrate orders in the Iberian 
Peninsula. We obtained the distribution data of freshwater fishes, am
phibians, reptiles, and terrestrial mammals from the IUCN red list 
(https://www.iucnredlist.org), accessions 2020 (amphibians, reptiles 
and mammals) and 2021 (freshwater fishes). Among freshwater fishes, 
we selected the order Cypriniformes, among amphibians the order 
Anura (frogs), among reptiles the order Squamata (snakes and lizards) 
and among mammals the orders Chiroptera (bats), Rodentia (rodents) 
and Carnivora (carnivores). For each order, we built a presence/absence 
matrix for the Iberian Peninsula in a 1◦x1◦ cell grid. The grid was con
structed using the “sp” package, with functions spsample to place the cell 
centroids and SpatialPixelsDataFrame to obtain the final grid. The com
munity similarity among cells was computed with Simpson's pairwise 
similarity index, and the spatial distance among them as the geodesic 

distance between centroids using the geodist function of the “geodist” 
package (Padgham and Sumner, 2020). As in the simulation study, we 
fitted the negative exponential, power-law and Gompertz functions with 
the nlsLM function and selected the best fitting model based on the AIC 
statistic. 

3. Results 

To evaluate the type I and type II errors of the zdep test, we performed 
a simulation study, assessing its performance in three null hypothesis 
and three alternative hypothesis scenarios. The best fitting models for 
each distance-decay simulation are shown in Table 1. The best sup
ported model only differed between datasets (DS1 and DS2) in scenario 
#6. Thus, we subdivided this scenario into scenario 6.1, in which we 
fitted a Gompertz function to both DS1 and DS2 distance-decay curves 
and, scenario 6.2, in which we fitted an exponential function to both DS1 
and DS2 distance-decay curves. 

3.1. Calibration of the zdep test 

The zdep test showed good approximation to the nominal levels of α =
0.1, α = 0.05 and α = 0.01 independently of model function (negative 
exponential, power-law and Gompertz) and sample size (n = 25 vs. n =
50) (Fig. 3, Table S1). This indicates that, under the null hypothesis 
(equality of parameters), the probability of type I error is the one 
assumed by the value of α. Under the alternative hypothesis, the test 
showed low type II error (i.e. the proportion of significant p-values was 
close to 1). As expected, type II error was slightly larger when the esti
mated values of the parameters were similar, but not identical (i.e. in
tercepts in scenario 4 and slopes in scenario 5). In other words, in the 
scenarios designed to have one parameter very similar and the other 
quite different (scenarios 4 and 5), the observed type II errors for each 
parameter reflected this contrast (Fig. 3, Table S2). The type II error also 
decreased with sample size, being lower with n = 50 than with n = 25. 

3.2. Real data 

We compared the distance-decay patterns of Cypriniformes, Anura 
(frogs), Squamata (lizards and snakes), Chiroptera (bats), Rodentia 
(rodents) and Carnivora (carnivores) in the Iberian Peninsula by testing 
the equality of parameters of their distance-decay curves. In all cases, 
except in the cyprinids, the exponential function was the best fitting 
model and was thus used for the comparison of distance-decay param
eters across taxa. The cyprinids had significantly different intercept and 
slope than any other group, showing the steepest decay in community 
similarity (Fig. 4). No difference in distance-decay parameters was 
found between ectotherm orders (frogs and squamates). Similarly, 
mammal orders (endotherms) showed all similar intercepts and slopes, 
with only the carnivores having a marginally significant (p < 0.1) flatter 
slope than bats and rodents (Table 2). On the contrary, marked differ
ences were observed between ectotherm and endotherm groups. The 
frogs and squamates' slopes were significantly different from the ones of 
bats, rodents and carnivores, being steeper in the ectotherm's groups. 
However, only bats and frogs showed significant differences in the 

Table 1 
Models best supported by the data (i.e. smallest AIC value) for each of the 
simulated distance-decay curves, based on the AIC.  

Null hypotheses Alternative hypotheses 

Scenario Model Scenario Model DS1 Model DS2 

1 Power-law 4 Gompertz Gompertz 
2 Negative 

exponential 
5 Negative 

exponential 
Negative 
exponential 

3 Gompertz 6 Negative 
exponential 

Gompertz  
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Fig. 3. Distribution of p-values across 1000 replicates in all simulated scenarios, comparing the results for the two parameters (intercept/position and slope) and 
with the two sample sizes (n = 25 and n = 50). Note that under the null hypothesis, the p-values follow a uniform distribution, so the proportion of rejections equals 
the nominal α level, for any selected value of α. This proves that the test avoids the inflation of degrees of freedom caused by pairwise dependence. Red dotted lines 
represent α = 0.05. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 4. Distance-decay models (negative exponential) of Iberian vertebrates' orders (obtained with 63 sampling points). Vertebrate pictures were downloaded from 
Wikimedia Commons (under Creative Commons licence, authors David Perez, Benny Trapp and Carlosblh). 
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intercept (Table 2). Parameter values can be found in the Supplementary 
Material Table S3. 

4. Discussion 

Our results show the good performance of the zdep statistic for the 
comparison of parameters between distance-decay models, a widely- 
used statistical approach in the assessment of biodiversity patterns 
(Nekola and White, 1999; Morlon et al., 2008; Soininen et al., 2007). To 
overcome the inflation of degrees of freedom inherent to this type of 
regression models, the zdep statistic implements a site-block resampling 
approach to estimate the variance of model parameters. The site-block 
resampling ensures that pairwise dependence is preserved in the data 
while the number of samples used to compute parameter variance (i.e. 
blocks) is equal to the effective sample size of the original data (i.e. 
number of sites), avoiding the inflation of degrees of freedom. Site-block 
resampling has also proven effective in significance tests for the non- 
linear relationships between community similarity and spatial distance 
(Martínez-Santalla et al., 2022). Here, we use site-block resampling for a 
different problem, i.e. a test for the equality of the parameters between 
two different distance-decay models. The test can be applied, indepen
dently, to any of the model parameters (i.e. intercept and/or slopes). Our 
simulation study under the null hypothesis shows that the type I error of 
zdep was consistently similar to the nominal α values. Simulations under 
the alternative hypothesis evidenced that the zdep test also has good 
statistical power (low type II error). The low Type I error does not seem 
to be affected by the mathematical function used to fit the curve, so the 
zdep test can be used to compare parameters of the most frequently used 
distance-decay models (power-law, negative exponential and Gompertz 
function). This is an important advantage as the functional form of the 
distance-decay curve can change depending on the study scale (Nekola 
and McGill, 2014) and the species range sizes (Martín-Devasa et al., 
2022). As expected, statistical power increases with sample size and 
decreases when parameter estimates are close, a common behaviour in 
most tests (Steidl et al., 1997). In the case study with real data, the zdep 
statistic has also proven useful to reveal differences in the patterns of 
species turnover with spatial distance among different taxa of Iberian 
vertebrates. 

Previous contributions have evidenced the relevance of comparing 
the parameters of distance-decay models across biological groups or 
biogeographic regions in order to better understand the causal processes 
behind community turnover. Some of these studies have provided 
different partial solutions to the problem we address in this paper. For 
example, Goldenberg Vilar et al. (2014) used a two-sample t-test. This 
approach could be, in principle, suitable to compare regression param
eters, but its performance is biased with pairwise dependent data (Rasch 
et al., 2011). A step forward was introduced by Nekola and White (1999) 
and Gómez-Rodríguez and Baselga (2018), who used resampling pro
cedures on similarity values to estimate the empirical distribution of 
either the difference between parameters or the parameters themselves. 
However, these approaches do not completely solve the problem of Type 
I error inflation because they do not account for the pairwise depen
dence of the similarity data during the resampling procedure. In turn, La 
Sorte and McKinney (2006) developed a resampling method directly on 

the presence/absence table rather than on the similarity matrix. This 
method truly accounts for the pairwise dependence of similarity data, 
but has some important differences with our zdep statistic. First, the 
observed parameter difference may not be within the bounds of the 
estimated null distribution, a situation that precludes estimating the 
probability that the observed parameter difference may be caused by 
chance (La Sorte and McKinney, 2006). When the value to compare is 
out of the bounds of the estimated null distribution, this type of per
mutation tests can result in inaccurate p-value estimations (Onghena 
and May, 1995; Phipson and Smyth, 2010). This is not a concern for the 
zdep statistic as its distribution under the null hypothesis is known to 
follow a N(0,1) distribution. The second main difference is the calibra
tion test. In this paper we have evaluated the performance of the zdep 
statistic in terms of type I and type II errors with a simulation study in 
the specific context of pairwise dependence, obtaining good results. 
Although permutation tests also tend to have good performances, to our 
knowledge there is no type I and II error evaluation for La Sorte and 
McKinney (2006) permutation test, so its approximation to the nominal 
level (α) and type II error remains unknown. In general, we think that 
the specific design of the zdep statistic to account for pairwise depen
dence, its known distribution under the null hypothesis, and the good 
performance evidenced by our simulation study make it the best option 
to perform comparisons of parameters between distance-decay models. 

The usefulness of the zdep statistic has been exemplified in the study 
of distance-decay patterns of Iberian vertebrates. We have compared 
distance-decay parameters among taxonomic groups given that these 
parameters can be used to understand how the organisms' dispersal and 
ecological characteristics influence the spatial turnover of biological 
communities (Gómez-Rodríguez and Baselga, 2018; Morlon et al., 2008; 
Soininen et al., 2007). Therefore, the steeper distance-decay slope of the 
cyprinids is probably reflecting the poor dispersal ability of freshwater 
fishes in comparison with terrestrial vertebrates (Leroy et al., 2019). 
This is an expected pattern in freshwater fish because drylands and 
saltwater are barriers that constrain their distribution to rivers and 
lakes, which can be considered as islands (Dias et al., 2014; Tedesco 
et al., 2012). As a consequence, dispersal limitation and therefore spatial 
distance between sites are major factors driving the composition of 
cyprinids communities (Baselga and Leprieur, 2015; Drakou et al., 
2009). Our results also show that, in the Iberian Peninsula, ectotherms 
have higher turnover rate than endotherms, a pattern that seems to be 
the general trend across regions (Buckley and Jetz, 2008; Qian and 
Ricklefs, 2012). This can be explained by the poor dispersal ability of 
amphibians and reptiles (Crnobrnja-Isailovic, 2007), and/or by their 
smaller tolerance to environmental changes compared to endotherms 
(Buckley et al., 2012). In our particular case, the Iberian Peninsula is a 
biogeographical heterogeneous territory, with regions at both sides of 
the Eurosiberian / Mediterranean boundary, and multiple mountain 
ranges creating steep environmental gradients at relatively small spatial 
scales. As a result, species turnover in lizards and frogs tends to be more 
marked than in mammals because their community composition is more 
tightly related to the environmental differences between regions (Sillero 
et al., 2009). The lack of difference in distance-decay patterns between 
frogs and lizards, or among mammal orders is probably related to the 
spatial extent of the study, which may not be large enough to evidence 

Table 2 
P-values of the zdep statistic in the comparison of the intercept and slope between distance-decay models of different groups of Iberian vertebrates (Anu = Anura, Squ =
Squamata, Chi = Chiroptera, Rod = Rodentia, Car = Carnivora). Significant values are shown in bold.  

Intercept      Slope       

Cyp Anu Squ Chi Rod  Cyp Anu Squ Chi Rod 

Anu <0.01     Anu <0.01     
Squ <0.01 0.34    Squ <0.01 0.72    
Chi <0.01 0.02 0.45   Chi <0.01 <0.01 <0.01   
Rod <0.01 0.09 0.57 0.88  Rod <0.01 <0.01 <0.01 0.53  
Car <0.01 0.12 0.84 0.40 0.61 Car <0.01 <0.01 <0.01 0.07 0.08  
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differences when dispersal abilities are largely similar between taxo
nomic orders. 

In general terms, besides the spatial extent of the analysis, the sta
tistical power of the zdep statistic could also be affected by any factor 
influencing the variance of parameter estimates, as in any other statis
tical test. For example, smaller grain sizes (e.g., 0.5◦ cells instead of 1◦

cells), uneven sampling schemes or low sampling effort might increase 
the variance of parameters, thus reducing the statistical power of zdep. 
Regarding the calibration of the Type I error rate, it is important to stress 
that data simulation under the null hypothesis is far from trivial. 
Initially, our intuition was that we could simulate species distributions 
in a single virtual landscape and use two independent sets of sampling 
points to compute two distance-decay models (data not shown). How
ever, such procedure yielded a probability of rejection larger than the 
nominal α value because in fact this approach does not ensure that the 
distance-decay curves followed the exact same distribution. In other 
words, the simulations were deviating from the null hypothesis because, 
even if the species distributions are the same, the patterns of dissimi
larity can be different in different regions of the landscape, so using two 
independent sets of sampling points could result in two different 
distance-decay curves. To solve this problem, we based our approach to 
simulate distance-decay data under the null hypothesis on the idea that 
we needed to generate two models with the same theoretical parameters 
but different error. By making a resampling of the same model we can 
ensure that this requirement is fulfilled. With our method we do not 
know the real parameters, but we are sure that we are working with the 
null hypothesis because both models are samples of the same one, 
ensuring that f1(x) = β + βx + ε1, f2(x) = β + βx + ε2. Therefore, we can 
effectively calibrate Type I error. 

Here we have illustrated the use of the zdep statistic to compare 
distance-decay patterns across taxonomic groups. However, the zdep test 
can be extended to the study of any pattern resulting from the applica
tion of pairwise metrics, for example, the relationship between genetic 
and spatial distances (Wright, 1943). The functional form of the rela
tionship between genetic and spatial distance can also be modelled with 
parametric functions, and the slope of this relation is used to infer the 
organisms' dispersal ability (Chust et al., 2016; Gómez-Rodríguez et al., 
2020; Kinlan and Gaines, 2003; Lester et al., 2007). Similarly, the zdep 
can be also applied to data lacking spatial structure, such as temporal 
turnover or compositional variation with abiotic gradients. Therefore, 
the zdep statistic can be extended to the study of numerous diversity 
patterns at various hierarchical levels of biological organization (e.g. 
Baselga et al., 2015, 2022). 

5. Conclusions 

The good performance of the zdep statistic in the calibration study and 
its applicability to real biodiversity data illustrated here with the Iberian 

vertebrates, make it the best option to assess differences in parameters of 
regression models of pairwise data, such as models of distance-decay of 
community similarity. The zdep statistic provides accurate results as it 
accounts for pairwise dependence, which avoids the inflation of degrees 
of freedom, and thus provides a good approximation to the nominal α 
level (i.e. good Type I error). Importantly too, the zdep statistic can be 
applied to any functional form of distance-decay, including non-linear 
relationships as the negative exponential, power-law, or sigmoidal (i. 
e. Gompertz). Because the model parameters of these functions have a 
biological interpretation (Qian, 2009; Saito et al., 2015; Soininen et al., 
2007), assessing their differences across biological groups or biogeo
graphic regions is key for our inferences of the causal processes behind 
community turnover (Gómez-Rodríguez and Baselga, 2018). In other 
words, this new method allows assessing whether differences in 
distance-decay parameters are significant between biological groups or 
regions, and this opens the opportunity to study whether the biological 
attributes of biological groups (e.g., dispersal limitation or ecological 
requirements) or the characteristics of biogeographic regions drive the 
differences in distance-decay patterns. This type of inferences, based on 
comparisons between biological groups or biogeographic regions with 
contrasting attributes, are crucial for understanding the causal processes 
behind the spatial turnover of biological communities and, therefore, for 
our ability to predict how these biodiversity patterns would be affected 
by future changes in the environmental conditions. 
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Appendix A. Test calibration 

The performance of the zdep statistic was evaluated using simulated distance-decay data to build null and alternative hypothesis scenarios in which 
we assessed which model function (negative exponential, power-law or Gompertz) was the best-supported to describe the relationship between 
community similarity and spatial distance. Once the best-supported model was fitted to the data, we used the zdep statistic to perform parameters 
comparison. The complete procedure is as follows:  

1. Simulate two datasets (S1, D1) and (S2, D2), where S and D are the community similarity and spatial distance matrices, respectively, in a null or 
alternative hypothesis scenario.  

2. Fit the best-supported model (Table 1) to estimate the distance-decay parameters of each curve: θ̂a1, θ̂b1 and θ̂a2, θ̂b2 , respectively. The first 
subindex stands for the parameter (a = intercept or position parameter, and b = slope), while the second subindex stands for the two models that 
are being compared (model 1 or model 2).  

3. Obtain the value of the zdep statistic (Eq. 1) for the comparisons θa1 vs. θa2, and θb1 vs. θb2. To compute the variance in the parameters' estimations, 
required for obtaining the denominator of the test statistic, we used 300 resamples of a site-block resampling.  

4. Repeat steps 1–31,000 times, obtaining 1000 values of the test statistic, namely zdep. k, with k = 1, …,1000. 
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5. Compute the corresponding 1000 p-values as 2*P(|z| > |zdep. k|), being zdep. k the observed value of the statistic in each of the k samples computed in 
step 4, and z a N (0,1) distribution.  

6. Calculate the proportion of null hypotheses rejections in each of the k samples with a nominal level of α = 0.1, α = 0.05 and α = 0.01. 

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ecoinf.2022.101894. 
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ecology. Écoscience 9 (2), 162–167. https://doi.org/10.1080/ 
11956860.2002.11682702. 

Dias, M.S., Oberdorff, T., Hugueny, B., Leprieur, F., Jézéquel, C., Cornu, J.-F., Brosse, S., 
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Gómez-Rodríguez, C., Miller, K.E., Castillejo, J., Iglesias-Piñeiro, J., Baselga, A., 2020. 
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Tedesco, P.A., 2019. Global biogeographical regions of freshwater fish species. 
J. Biogeogr. 46 (11), 2407–2419. https://doi.org/10.1111/jbi.13674. 

Lester, S.E., Ruttenberg, B.I., Gaines, S.D., Kinlan, B.P., 2007. The relationship between 
dispersal ability and geographic range size. Ecol. Lett. 10 (8), 745–758. https://doi. 
org/10.1111/j.1461-0248.2007.01070.x. 

Liu, R.Y., Singh, K., et al., 1992. Moving blocks jackknife and bootstrap capture weak 
dependence. Exploring the Limits of Bootstrap 225, 248. 

Mantel, N., 1967. The detection of disease clustering and a generalized regression 
approach. Cancer Res. 27 (2), 209–220. 

Mantel, N., Valand, R., 1970. A tehnique of nonparametric multivariate analysis. 
Biometrics 26 (3), 547–558. 

Martín-Devasa, R., Martínez-Santalla, S., Gómez-Rodríguez, C., Crujeiras, R.M., 
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