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Abstract
Question: To better understand the influence of deep-time diversification on extant 
plant communities, we assessed how community dissimilarity increases with spatial 
and climatic distances at multiple taxonomic ranks (species, genus, family, and order) 
in angiosperm trees. We tested the prediction that the dissimilarity–distance relation-
ship should change across taxonomic ranks depending on the deep-time diversifi-
cation in different biogeographical regions reflecting geohistories and geographical 
settings.
Location: Global.
Methods: Using a data set of plot-based surveys across the globe (861 plots), we com-
piled a community composition matrix comprising 21,455 species, 2,741 genera, 240 
families, and 57 orders. We then calculated Sørensen's pairwise dissimilarity (βsor), 
and its turnover (βsim) and nestedness (βsne) components, among plots within seven 
biogeographical regions. Finally, we modeled the relationships between the biotic dis-
similarities and the spatial/climatic distances at each taxonomic rank, and compared 
them among regions.
Results: βsor and βsim increased with increasing spatial and climatic distance in all bi-
ogeographical regions: βsim was dominant in all biogeographical regions in general, 
while βsne showed relatively high contributions to total dissimilarity in the temper-
ate regions with historically unstable climatic conditions. The βsim-distance curve was 
more saturated at smaller spatial scales in the tropics than in the temperate regions. 
In general, the curves became flatter at higher taxonomic ranks (order or family), with 
the exception of Africa, North America, and Australia, pointing to region-specific geo-
graphical constraints.
Conclusions: Compositional dissimilarity was generally shaped through the abrupt 
turnover of species along spatial/climatic gradients. The relatively high importance of 
the nestedness component in the temperate regions suggests that historical disper-
sal filters related to extinction/colonization may play important roles. Region-specific 
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1  | INTRODUC TION

The similarity in species composition between local biological com-
munities decreases with spatial/environmental distance. This pat-
tern, known as distance decay of similarity or simply distance decay, 
is ubiquitous across organisms and biological systems (Nekola & 
White, 1999; Soininen et al., 2007). The decrease of similarity with 
distance is mechanistically driven by dispersal limitation (Hubbell, 
2001) and niche constraints (Gilbert & Lechowicz, 2004), mediated 
through contemporary environmental gradients and evolutionary 
diversification. Indeed, there are a number of empirical studies that 
have applied a distance decay approach to answer different ques-
tions related to community assembly processes: niche partitioning 
along current environmental gradients (Bellier et al., 2014; Trujillo 
et al., 2019; Cacciatori et al., 2020), historical species sorting through 
dispersal of organisms (Qian, 2009; Saito et al., 2015), dispersal bar-
riers related to geographical constraints (Stuart et al., 2012), differ-
ences in dispersal ability among taxa (Gómez-Rodríguez & Baselga, 
2018; Gómez-Rodríguez et al., 2020) and historical habitat stabil-
ity (Fitzpatrick et al., 2013). A common theme linking these studies 
is their use of the shape of distance decay curves as a measure to 
infer the role of historical and contemporary factors in generating 
diversity patterns under study (Morlon et al., 2008; Réjou-Méchain 
& Hardy, 2011; Gómez-Rodríguez & Baselga, 2018). Rooted in this 
approach, we here propose that assessing distance decay patterns 
at multiple taxonomic ranks (species, genus, family, and order) will 
allow inferring the influence of deep-time diversification on extant 
plant communities, and its contrasting relevance in tropical and tem-
perate biogeographical regions.

Angiosperm tree floras in tropical and temperate regions are re-
garded as evolutionary source and sink, respectively. Many clades 
that now comprise the tropical flora have been hypothesized to have 
originated in western Gondwana, which was part of the supercon-
tinent that contained South America and Africa (Fine & Ree, 2006; 
Christenhusz & Chase, 2012), and subsequently diversified, after 
crossing long-standing geographic barriers, among the continents 
through the Eocene, Oligocene, and Miocene (Hardy et al., 2012). In 
temperate areas, many extant lineages are thought to have originated 
from the Asian tropical flora (Wen, 1999; Donoghue, 2008) and af-
terward have regionally diversified in East Asia, Northern America, 
and Europe in response to the Plio–Pleistocene global cooling (Fine 
& Ree, 2006). Macroscale diversity patterns of angiosperm trees are 

characterized by evolutionary radiations within disjunct families/
genera in tropical and temperate forests (Gentry, 1988; Donoghue 
& Smith, 2004) and taxon-specific selective dispersal/extinction re-
lated to paleoclimate changes in temperate regions (Svenning, 2003; 
Eiserhardt et al., 2015).

The afore-mentioned studies suggest that the study of taxo-
nomic diversity across lower (species) to higher taxonomic ranks 
(genus, family, and order) could provide a fundamental basis for bet-
ter understanding deep-time diversification related to geohistory 
including paleoclimates. Indeed, correlations of species richness 
within a higher taxonomic group (family or order) among continents 
have been shown to represent a consistent biogeographical pattern 
resulting from diversification at different evolutionary time scales 
and related to family-specific niche conservatism and global-scale 
dispersal (Chen et al., 2012; Munoz et al., 2012; Ricklefs & Renner, 
2012). Therefore, we propose that assessing the distance decay 
curves of tree angiosperm communities at a range of taxonomic 
ranks, which provide a surrogate for a macroevolutionary hierarchy 
(Graham et al., 2018), should reveal any historical imprint on cur-
rent spatial diversity patterns (Munoz et al., 2014; Yeh et al., 2019). 
Specifically, regional differences in deep-time diversification should 
be reflected in the geographical distribution of higher-rank taxa, 
such as genera, families or orders, through processes such as niche 
conservatism and dispersal limitation (Kerkhoff et al., 2014; Weiser 
et al., 2018).

While similarity indices are commonly used in distance decay 
studies (Nekola & White, 1999), compositional dissimilarity (i.e., 1 
− similarity) metrics can describe the equivalent patterns and some 
of these metrics can be partitioned into turnover and nestedness-
resultant components (Baselga, 2010; Legendre, 2014; Soininen 
et al., 2017). The turnover component represents taxonomic re-
placement that may be caused by species sorting associated with 
niche differentiation, evolutionary processes such as radiation and 
allopatric speciation, and/or dispersal limitation (Leibold et al., 2004; 
Leprieur et al., 2011). The nestedness component reflects changes 
in species richness caused by selective species loss or gain that may 
be associated with recent vicariance events, e.g., insular changes by 
sea-level rise (Rijsdijk et al., 2014), or a colonization lag after drastic 
environmental changes such as ice age disturbances (Hortal et al., 
2011). Therefore, each component is expected to have an indepen-
dent relationship with geographical and environmental distance 
(Antão et al., 2019; Bevilacqua & Terlizzi, 2020), and their relative 
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importance may change depending on historical habitat stability 
(Baselga et al., 2012). The turnover component can be expected 
to have a steep slope and an asymptotic relationship with spatial 
distance under strong dispersal limitation, while a flatter relation-
ship would be observed when dispersal limitation is weak or absent 
(Gómez-Rodríguez et al., 2020). The nestedness component is ex-
pected to linearly decrease with increasing spatial/environmental 
distance under strong dispersal limitation, but to be independent of 
distance under no dispersal limitation (Gianuca et al., 2016; Antão 
et al., 2019).

Using a global dataset of forest plots (861 plots), we quanti-
fied pairwise compositional dissimilarity of angiosperm tree com-
munities at different taxonomic ranks (species, genus, family, and 
order) in seven biogeographical regions (South American, African, 
Indo-Pacific, Australian, North American, West Eurasian, and East 
Eurasian). We compared the relationship between compositional 
dissimilarity and spatial/climatic distance (i.e., dissimilarity–distance 
relationship) between the biogeographical regions and between the 
taxonomic ranks in order to explore the effect of deep-time diver-
sification on the spatial patterns of extant tree communities. Based 
on the afore-mentioned reasoning, we tested the following predic-
tions: (a) taxonomic turnover will be the dominant component of dis-
similarity in historically stable regions (Baselga et al., 2012), such as 
regions that contain tropical areas; (b) in contrast, the nestedness 
component will be predominant in historically unstable regions (e.g., 
temperate areas in higher latitudes) that have experienced extinc-
tion and colonization events in response to the expansion/retreat 
of ice sheets due to paleo-climate changes (Baselga et al., 2012; 
Soininen et al., 2017); (c) the relationship between the turnover 
component and spatial/climatic distance will be very steep at short 
distances, quickly saturating at maximum dissimilarity at the species 
level due to strong dispersal limitation, while the relationship will 
become flatter at higher taxonomic ranks. This flattening should be 
more marked in the regions containing tropical areas because of the 
older evolutionary age of tropical areas, which should have allowed 
higher-level taxa to spread across wider areas (i.e., lower dispersal 
limitation); (d) however, the steep relationship between the turnover 
component and spatial/climatic distances should remain asymptotic 
even at higher taxonomic ranks (Cowling et al., 2015) if climatic 
gradients and/or vicariance have been maintained over large time 
periods; and (e) the nestedness component should show a nega-
tive linear relationship with spatial/climatic distance at the species 
level in historically unstable regions, but be independent from the 
distances at higher taxonomic ranks due to less dispersal limitation.

2  | METHODS

2.1 | Angiosperm tree community data

Community composition data of angiosperm tree species were 
collated from a series of plot-based surveys across the globe 
(Ulrich et al., 2016; Kubota et al., 2018). The data were compiled 

from a literature census using various search engines, includ-
ing Web-of-Science (Thomson-Reuters, New York, NY, USA) 
and Google Scholar (http://schol​ar.google.com/), and web-
based forest plot databases (e.g., Gentry's data; www.wlbce​
nter.org/gentry_data.htm). Our dataset only includes plots 
where the absolute number of individuals was recorded for all 
tree species at a given census threshold in individual size (i.e., 
diameter at breast height). The taxonomic classification (spe-
cies, genus, family, and order) was standardized following The 
Plant List (http://www.thepl​antli​st.org/). Unnamed species and 
morphospecies identified only to genus were treated as indi-
vidual species (we confirmed that excluding these species did 
not meaningfully affect the results of the dissimilarity–distance 
analyses). We excluded naturally/artificially disturbed plots and 
plots with less than two angiosperm tree species. We also ex-
cluded gymnosperms (163 species) from the data. The final data-
set comprised 861 plots (range =  100–520,000 m2; Figure  1). 
Using all plots, we created community composition matrices for 
four taxonomic ranks: species (21,455 species), genus (2,741 
genera), family (240 families), and order (57 orders). We then 
subdivided each matrix into seven biogeographical regions. We 
defined the biogeographical regions using a modified version 
of Cox et al.’s floral Kingdoms (South American, African, Indo-
Pacific, Australian, and Holarctic; Cox, 2001): we subdivided 
the Holarctic Kingdom into North American, West Eurasian and 
East Eurasian (Figure 1) because of differences in their geohis-
tory and paleoclimatic conditions. The South American, African, 
Indo-Pacific, and Australian regions include tropical areas, while 
the North American, West Eurasian and East Eurasian are tem-
perate areas. In this study, we avoided a more detailed regionali-
zation (e.g., ecoregions) because of the limited number of plots 
and their spatially inhomogeneous distribution (Figure 1). More 
details of the data compilation process are provided in Ulrich 
et al. (2016) and Kubota et al. (2018).

Community undersampling is a potential problem in dissimi-
larity analyses (Beck et al., 2013), especially in cases such as ours 
where data are taken from multiple sources that have used dif-
ferent census schemes (e.g., plot area and the size criterion for 
measuring individuals). Therefore, the plots were screened based 
on sampling completeness: we estimated sample coverage (SC) 
based on relative species abundance, which is an unbiased esti-
mate represented by the proportion of all detected individuals 
(Chao et al., 2020): SC values are in the range 0 to 1. We filtered 
the plots at SC ≥ 0.9 (n = 661; Figure 2) and also examined other 
criteria (≥0.7, ≥0.8, and ≥0.85) to test the potential influence of 
arbitrary choices of SC thresholds. SCs filtered out the incom-
pletely sampled plots which cannot be distinguished by plot areas 
or census thresholds, allowing us to include the local communities 
which were equivalently well sampled (Appendix S1). Differences 
in plot areas and census thresholds are particularly likely to influ-
ence absolute abundance differences among the plots (Baselga, 
2013). Therefore, we used presence/absence information in the 
dissimilarity analyses.

http://scholar.google.com/
http://www.wlbcenter.org/gentry_data.htm
http://www.wlbcenter.org/gentry_data.htm
http://www.theplantlist.org/
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F I G U R E  2  Histograms for sampling completeness evaluated as sample coverage (SC) per community in seven biogeographical regions 
(South American, African, Indo-Pacific, Australian, North American, West Eurasian, and East Eurasian). The equivalently well-sampled plots 
(SC ≥ 0.9) were used in the dissimilarity–distance analyses
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Australian, North American, West Eurasian, and East Eurasian. Plots were colored by sample coverage (SC)
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2.2 | Dissimilarity calculation

Using the subset of equivalently well-sampled plots (SC  ≥  0.7, 
0.8, 0.85, or 0.9), we calculated pairwise dissimilarity between 
plots within the same biogeographical region (Figure  1) for each 
taxonomic rank (species, genus, family, and order). We followed 
Baselga’s (2010) beta diversity partitioning framework based on 
Sørensen dissimilarity (βsor), which was decomposed into turnover 
(βsim) and nestedness-resultant dissimilarity (βsne) components. The 
compositional dissimilarity of lower taxonomic ranks is inevitably 
influenced by the dissimilarity of higher taxonomic ranks due to 
the ranks being hierarchically structured: βsne should be higher at 
higher taxonomic ranks, while βsim should be higher at lower (e.g., 
species) taxonomic ranks. Before analyzing dissimilarity–distance 
relationships, we assessed whether the influence of deep-time di-
versification on beta diversity is region-specific or not by evalu-
ating correlations between the dissimilarity matrices at different 
taxonomic ranks for each dissimilarity component (βsor, βsim, and 
βsne) in each biogeographical region.

2.3 | Spatial and climatic distances

Spatial distance was defined by the great-circular distance between 
each pair of plots. We downloaded climatic (Bio-1–19) and elevation 
data at 30-arc-second resolution from the WorldClim ver. 2.1 data-
base (Fick & Hijmans, 2017; http://www.world​clim.org), overlapped 
them with the plot coordinates, and assigned the information to each 
plot. To analyze the effect of climatic distance, we calculated the 
Euclidean distance in the 20-dimensional space between plots using 
the variables after standardization (i.e., mean = 0 and variance = 1).

2.4 | Statistical analysis

We modeled the relationship between pairwise compositional 
dissimilarity (βsor, βsim, and βsne) and spatial/climatic distance (i.e., 
the dissimilarity–distance curve) in each region and for each taxo-
nomic rank using both negative exponential and power-law func-
tions (Nekola & McGill, 2014); these functions were fitted using a 
generalized linear modelling approach with a Gaussian distribution 
and a log-link function (Millar et al., 2011). Model fit was evaluated 
using pseudo-r2 defined as 1 –  (model deviance/null deviance; 
McFadden, 1973). The two functions provided similar fits to the 
data according to Akaike's Information Criterion (Appendix  S2), 
and thus, we only present results for the negative exponential 
model in the main text (see Appendix S3 for the results using the 
power-law model). In the negative exponential model, the inter-
cept and slope can be interpreted as the initial dissimilarity (inher-
ent compositional variation among the closest local communities) 
and the speed of compositional change (or rate of decay), respec-
tively. We tested for differences in the intercepts and slopes of the 
negative exponential model between biogeographical regions by 

bootstrapping (multiple comparisons among each pair of regions): 
we computed 1,000 bootstrap samples for each parameter, cal-
culated the difference in parameter values between two regions, 
calculated the proportion of positive and negative differences re-
spectively, and used the smaller of these (i.e., upper or lower tails) 
proportions as a P-value. We also assessed the influence of SC 
thresholds (SC = 0.7 ~ 0.9) on the parameter estimation by eval-
uating the inter-regional rank correlations for the effect size of 
parameters between the different SC thresholds. In addition, we 
fitted a locally estimated scatterplot smoothing curve to visualize 
changes in the relative importance of the turnover component to 
overall dissimilarity (βsim/βsor) along the spatial/climatic distance 
gradients.

All statistical analyses and graphical works were undertaken 
using R ver. 3.6.1 (R Core Team, 2019) and the following packages: 
betapart (Baselga & Orme, 2012) to calculate and decompose pair-
wise compositional dissimilarity, geosphere (Hijmans, 2019) to calcu-
late spatial distance, iNEXT (Hsieh et al., 2016) for calculating the 
sampling completeness of each plot, and multcompView (Graves 
et al., 2019) for multiple comparisons.

3  | RESULTS

The parameters (especially slopes) of the negative exponential 
models at lower SC thresholds (0.7–0.85) differed from those es-
timated using SC ≥ 0.9, particularly for the climatic distance model 
(Appendix S4). The inter-regional ranking of effect size was con-
sistent for the spatial distance models (i.e., Spearman's rank cor-
relation ρ = 1), whereas change in the order was observed in the 
climatic distance model (ρ = 0.75 ~ 1.00). Therefore, we only show 
the results using the most strict criterion (SC ≥ 0.9) for all subse-
quent analyses.

Total dissimilarity (βsor), the turnover component (βsim), and 
the nestedness component (βsne) showed strong correlations be-
tween the taxonomic ranks, but with substantial variation in de-
gree between the regions (Appendix  S5), indicating the influence 
of region-specific deep-time diversification on shaping turnover/
nestedness-resultant beta diversity.

3.1 | Total dissimilarity and spatial distance

Between sites, βsor increased with increasing spatial distance and 
this finding was consistent within all biogeographical regions 
(Figure 3). The negative exponential model provided a relatively 
good fit to the dissimilarity–distance pattern at the species level 
(r2  =  0.34  −  0.74), but the amount of explained variance gen-
erally decreased along taxonomic ranks from genus to order 
(Figure 4; r2 = 0.08–0.66 for genera; r2 = 0.01–0.55 for families; 
r2 ≤ 0.01–0.43 for orders). The intercept and slope of the nega-
tive exponential model became smaller at higher taxonomic ranks 
(Appendices S6 and S7).

http://www.worldclim.org
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3.2 | Relationships between turnover and 
nestedness-resultant components and spatial distance

The spatial patterns of βsim were well characterized by the negative 
exponential model, especially at the species level (Figure 3a), and 
exhibited an asymptotic increase with spatial distance (Figure 4). 
In all geographical regions except for sites near to each other in 
the West Eurasian region, βsim was the predominant component 

of βsor (Figure 5), but the relative importance of βsim decreased 
along the taxonomic ranks from genus to order. The intercept 
and slope of the βsim–distance curve were smaller in the temper-
ate regions (North American, West Eurasian, and East Eurasian) 
where the βsim slowly saturated over the entire geographical ex-
tent at the species level (Appendices S6 and S7). In contrast, the 
intercept and/or slope of the βsim–distance curve was larger in 
the regions containing tropical areas (South American, African, 

F I G U R E  3  Pseudo-r2 of negative exponential models for the relationships between taxonomic dissimilarity and (a) geographical and (b) 
climatic distance per taxonomic rank [species (SP), genus (GN), family (FM) and order (OR)] in each biogeographical region: South American 
(SA), African (AF), Indo-Pacific (IP), Australian (AU), North American (NA), West Eurasian (WE) and East Eurasian (EE). Total dissimilarity 
matrices (βsor) were decomposed into turnover (βsim) and nestedness (βsne) components. Dashed line represents 5% for a visual guide
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and Indo-Pacific) where the βsim at species level saturated at a 
smaller geographical extent (Figure  4). The βsim values became 
lower, and the shape of the curve became flatter, at higher tax-
onomic ranks in the South American and Indo-Pacific regions 
(Figure 4). In contrast, the slope of the curve was relatively steep 
even at the family and order levels in the African, Australian, and 
North American regions (Figure 4 and Appendix S7).

The negative exponential model poorly explained βsne (Figure 3a); 
the relationship between βsne and spatial distance was mostly flat, 
while a negative linear relationship was found at the species level 
in the Holarctic regions, especially in West Eurasian (Figure 4 and 
Appendix S7). At the species level, βsne accounted for a major pro-
portion of βsor only within sites near to each other in the Holarctic re-
gions (Figure 5). However, the relative importance of βsne increased 

F I G U R E  4  The relationship between pairwise dissimilarity and spatial distance (dissimilarity–distance relationship) as fitted by a negative 
exponential model using presence/absence composition data at the species, genus, family and order levels, in each biogeographical region: 
South American (SA), African (AF), Indo-Pacific (IP), Australian (AU), North American (NA), West Eurasian (WE) and East Eurasian (EE). Total 
dissimilarity matrices (βsor) were decomposed into the turnover (βsim) and nestedness-resultant (βsne) components
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at higher taxonomic ranks even in the regions containing tropical 
areas, especially in the South American region (Appendix S6).

3.3 | Relationships between taxonomic 
dissimilarity and climatic distance

In general, the increase in pairwise taxonomic dissimilarity (βsor, 
βsim, and βsne) with climatic distance was similar to that observed 

with spatial distance (Appendices  S8–S10). The negative expo-
nential models fitted using climatic distance had slightly better 
explanatory power than the models fitted using spatial distance 
for most regions and ranks, but provided worse fits at the spe-
cies and genus levels in the Indo-Pacific, African, West Eurasian, 
and Australian regions (Figure 3). In all regions, βsor and βsim exhib-
ited steep slopes and quick asymptotic saturation at the species 
level, while the saturation was relatively slower in Australian and 
the temperate regions compared to the South American, African 

F I G U R E  5  Changes in the relative importance of the turnover component to total dissimilarity (βsim/βsor) along geographical (left) and 
climatic (right) distance per taxonomic rank [species (SP), genus (GN), family (FM) and order (OR)] in each biogeographical region: South 
American (SA), African (AF), Indo-Pacific (IP), Australian (AU), North American (NA), West Eurasian (WE) and East Eurasian (EE). Climatic 
distance is calculated as the Euclidian distance between sites based on 19 bioclim variables and elevation. Locally estimated scatterplot 
smoothing curves (LOESS) are shown
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and Indo-Pacific regions (all containing tropical areas; Appendix 
S8). The slope of the βsim–distance curve was smaller at higher 
taxonomic ranks, but it remained relatively high even at the fam-
ily and order levels in the African and North American regions 
(Appendices S8 and S10). The relative importance of βsim to βsor in-
creased with the climatic distance, especially in the West Eurasian 
region at the species level, while the pattern was less clear at the 
family and order levels (Figure 5).

4  | DISCUSSION

Our results reveal substantial differences in patterns of variation in 
local angiosperm tree communities across different biogeographi-
cal regions, with contrasting effects of deep-time processes of di-
versification between the biogeographical regions with and without 
tropical areas. The overall dissimilarity of angiosperm communities 
between forest plots was found to increase with spatial and climatic 
distance (a distance decay pattern) in all biogeographical regions, 
and was mainly driven by the turnover component at lower taxo-
nomic ranks (species and genus), although its relative contribution 
decreased at higher taxonomic ranks (family and order). However, 
these patterns showed region-specific variations. The regions con-
taining tropical areas (South American, African, and Indo-Pacific) 
showed steeper increases in total dissimilarity and the turnover 
component with spatial/climatic distances compared with the tem-
perate regions (North American, West Eurasian, and East Eurasian), 
while the Australian region showed intermediate trends (Figure 4, 
Appendices S7, S8, and S10).

The fast increase in dissimilarity in regions with tropical areas 
was mostly associated with the turnover component, indicating a 
fast compositional replacement along spatial and climatic distance 
gradients, especially at the species level. This is in line with previous 
studies of tropical forests (Condit et al., 2002; Tuomisto et al., 2003; 
Pennington et al., 2009; Trujillo et al., 2019) that found an important 
role of environmental filtering and dispersal limitation in generating 
species turnover. The decreasing compositional dissimilarity with in-
creasing taxonomic rank (from species, genus, family to order) and 
the flattening of the dissimilarity–distance curves may reflect the 
deeper evolutionary history of tropical forests (Munoz et al., 2014). 
Specifically, orders and families of angiosperm trees probably radi-
ated globally across phylogenetic niche space (Hubbell, 2001) under 
warmer climates through the Cretaceous to the Paleogene, and then 
subsequently species and genera within those regions diversified in 
response to different drivers, including geographical isolation and 
tropical-specific historical habitat stability through the Cenozoic 
(Fine & Ree, 2006). Indeed, our results showed the highest species 
turnover rates in the South American region (Figure 4), providing sup-
port for the view of the region as an evolutionary “engine” of plant 
diversity (Antonelli et al., 2015). Moreover, the turnover–distance 
relationships were flatter at the higher taxonomic ranks, suggest-
ing that the persistence or accumulation (dispersal) of old lineages 
(Coronado et al., 2015) plays a role in generating the high degrees of 

overall dissimilarity across the taxonomic ranks (Pennington et al., 
2009). This interpretation is also supported by the higher contribu-
tion of the nestedness component at the family and order levels in 
the South American region than in the other regions (Figures 4 and 
5). Meanwhile, some regions (e.g., African, Australian, and North 
American regions), regardless of whether they include tropical areas, 
exhibited a persistent steep dissimilarity–distance curve regarding 
the turnover component (Appendix S7), at both the family and order 
levels. This suggests taxonomic diversification at deeper time scales 
(Prinzing et al., 2001) and/or the persistence of different and older 
lineages in isolated sites (Tiffney & Manchester, 2001; Tolley et al., 
2011) as a result of geohistorically related biogeographical con-
straints, e.g., elevational gradients in the tropics (Qian & Ricklefs, 
2016) or climatic refugia (Tiffney & Manchester, 2001; Byrne, 2008; 
Tolley et al., 2011).

In contrast, the North American and both West and East Eurasian 
regions, comprising temperate floras, showed a slower saturation in 
total dissimilarity and the turnover component with spatial and cli-
matic distances, and a relatively higher contribution of the nested-
ness component in shaping the dissimilarity patterns of angiosperm 
tree communities than in the remaining regions, all of them contain-
ing tropical areas (Figure 3, Appendices S6 and S7). In addition, the 
nestedness component was less dependent on either spatial or cli-
matic distance in these regions. These findings are consistent with 
the findings of previous studies of the temperate biota (Keil et al., 
2012; Lenoir et al., 2012; Fitzpatrick et al., 2013; Soininen et al., 
2017; Antão et al., 2019), which suggest that the nestedness compo-
nent reflects the signal of historical processes that become more ev-
ident under unstable and harsh environmental conditions in higher 
latitudes (Baselga et al., 2012). Indeed, temperate angiosperm tree 
assemblages have been shown to have experienced genus level local 
extinction in response to Quaternary glaciations and/or global cool-
ing in the Holarctic regions (Svenning, 2003; Eiserhardt et al., 2015; 
Shiono et al., 2018), supporting the role of historical dispersal filters 
in shaping the nestedness-resultant dissimilarity of angiosperm tree 
communities in temperate forests.

In general, the negative exponential models fitted using spatial and 
climatic distance had comparable explanatory power and were similar 
in terms of the shape of the dissimilarity–distance curves (Figures 3 
and 4, and Appendix S8), suggesting that environmental filtering and/
or dispersal limitation have important roles in driving compositional 
turnover (Trujillo et al., 2019). However, a relatively lower explanatory 
power for the climatic distance model (i.e., it explained 11% less vari-
ance than the spatial distance model) was observed in the Indo-Pacific 
region at the species level (Figure  3). This suggests that taxonomic 
turnover in this region is likely to be driven by dispersal limitation and/
or other geographical factors, such as the spatial separation between 
islands and continental landmasses, and variation in island sizes (Ibanez 
et al., 2018). Moreover, the Indo-Pacific tropical forests are phyloge-
netically similar to the East Eurasian temperate forests (Kubota et al., 
2018), suggesting the regional divergence of the temperate flora orig-
inating from the Asian tropics (out-of-Asia hypothesis; Donoghue, 
2008). Therefore, in the East Eurasian region, the highest contribution 
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of the turnover component compared with the other Holarctic regions 
(Figures 4 and 5, Appendices S6 and S7) may also be promoted by in 
situ diversification of angiosperm trees through geographical vicari-
ance related to high insularity and highly dissected topography (Xiang 
et al., 2004; Kubota et al., 2014).

One potential caveat of analyzing assemblage dissimilarity be-
tween local plots is that species occurrence data obtained in vege-
tation plots might potentially suffer from sampling incompleteness 
(Beck et al., 2013). To deal with sampling bias, we computed sampling 
completeness using species relative abundance in individual plots 
(Chao et al., 2020) and assessed the spatial patterns of taxonomic 
dissimilarity by only analyzing nearly completely sampled plots (sam-
pling completeness ≥ 90%). Loosening of the SC threshold down to 
70% did not alter the general dissimilarity trends (Appendix S4), but 
it did cause a slight reduction in the slope of the dissimilarity–spatial 
distance curve in some regions. This suggests that including incom-
plete plots in which common species are likely to be well sampled but 
rare species are likely to be missed may overestimate similarity among 
local communities. Another potential bias is related to the shortfall of 
taxonomic knowledge, especially at higher taxonomic levels (family 
or order). Indeed, the taxonomic resolution of lineages differs among 
clades and regions, and in particular, is poorly resolved for the trop-
ics (Laffan, 2018). For example, in Malesia, it is estimated that only 
29% (of approximately 45,000) vascular plant species have been com-
prehensively treated taxonomically in the Flora Malesiana, and while 
there are additional taxonomic publications and treatments for this 
region, these are fragmented and overall the flora very much remains 
incompletely known and described (Middleton et al., 2019). From the 
viewpoint of filling gaps in our knowledge of plant biodiversity, fur-
ther taxonomic and systematic studies are needed to better under-
stand the relative role of evolutionary events at different time scales 
in shaping the taxonomic dissimilarity of woody angiosperms globally.

5  | CONCLUDING REMARKS

As with many macroecological patterns, the increase in dissimilarity 
with distance can be studied at multiple spatial scales (Nekola & White, 
1999; Wang et al., 2011; Fitzpatrick et al., 2013; Olivier & van Aarde, 
2014; Chun & Lee, 2017; Kasel et al., 2017; Trujillo et al., 2019). There 
have been many studies focused on the dissimilarity–distance pattern 
of vegetation that measure beta diversity at different spatial extents, 
from local scales (Morlon et al., 2008; Wang et al., 2011; Wang et al., 
2018) through to regional (Condit et al., 2002; Tuomisto et al., 2003) 
and global scales (Fitzpatrick et al., 2013; König et al., 2017). Despite 
these previous studies of beta diversity at local, regional and global 
scales, there are few examples of studies that use local community 
data to analyze large-scale dissimilarity patterns (but see Myers et al., 
2013; Kubota et al., 2018). In addition, beta diversity patterns at mul-
tiple taxonomic scales were unexplored, even though it is potentially 
informative to understand the imprints of deep-time diversification on 
extant diversity patterns. The present study contributes to filling this 
knowledge gap by showing how pairwise taxonomic dissimilarity and 

its components (calculated within biogeographical regions) at different 
taxonomic ranks change across biogeographical regions through the 
analysis of local tree communities across the globe. Our findings of 
taxonomic dissimilarity among angiosperm tree communities, which 
showed region-specific variations in the dissimilarity–distance rela-
tionships across taxonomic ranks, reveal the geographical pattern 
of diversification that is mechanistically driven by niche assembly at 
higher taxonomic ranks (Ricklefs & Renner, 2012), and global/regional-
scale dispersal limitation (Hubbell, 2001).

To conclude, our results generally supported our five predictions. 
First, taxonomic turnover increased faster with spatial/climatic dis-
tance in those biogeographical regions encompassing the tropics, 
i.e., in those areas where climatic conditions have been more stable 
historically, compared to the temperate regions. Second, in gen-
eral, the turnover component decreased and its relationship with 
spatial/climatic distance became flatter at higher taxonomic ranks 
(order or family); this may reflect the evolutionary histories of an-
giosperm trees associated with region-specific geohistories in the 
tropics and outside the tropics. However, and third, we also found 
relatively steep turnover patterns with spatial/climatic distances in 
the African, North American, and Australian regions at family and/
or order levels, which may be related to region-specific geograph-
ical constraints. Fourth, the nestedness component was generally 
smaller than the turnover component and almost independent from 
spatial/climatic distance in the regions containing tropical areas at 
the species level. However, and fifth, the nestedness component 
comprised a relatively larger proportion of overall dissimilarity in 
the Holarctic regions, which are often more historically unstable 
regions. In sum, the relationship between pairwise dissimilarity and 
distance for angiosperm tree communities at species, genus, family, 
and order levels illustrates the importance of geographical filters 
associated with historical and contemporary factors, in shaping re-
gional beta diversity patterns of angiosperm trees.
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