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A B S T R A C T   

Early detection of invasive species in regions under threat is key for biodiversity conservation. Here we conduct a 
retrospective study to assess whether correlative Species Distribution Models (SDMs) can predict the spatio- 
temporal range of expansion in an invasive species, the Asian hornet. Given that modelling invasive species 
distributions defies one of the main assumptions of SDMs, the equilibrium with climate, we also introduce a 
quantitative assessment of climatic disequilibrium in the invaded area based on hypervolume comparison be
tween the native and invaded areas (both unoccupied and occupied territories). We evaluate the ability of three 
different modelling approaches (presence-only, presence-background and presence-absence) calibrated with data 
until 2013 to predict the species distribution observed the following years (2015, 2017, 2019, and 2021). Our 
results show that presence-only models based on the BIOCLIM algorithm can effectively predict the spatio- 
temporal pattern of invasion when predictions are rescaled based on percentiles (i.e. ranked suitability) and 
the model is calibrated with data from both native and invaded areas. These models predicted higher suitability 
values for sites that were invaded earlier in time and, importantly, they did not predict low suitability values for 
sites that were eventually occupied years later. Thus, they can be very useful for decision-makers and managers, 
as they provide a probabilistic prediction of both (i) the temporal dimension of species range expansion, and (ii) 
the potential distribution range in the long term. Such information would allow prioritizing monitoring efforts in 
the short term without losing sight of the potential risks in the long term.   

1. Introduction 

The early detection of invasive species in regions under threat is key 
for biodiversity conservation. Correlative Species Distribution Models 
(SDMs) have been widely used to identify where environmental condi
tions are suitable, and hence where invasive species are likely to occur 
(Baquero et al., 2021; Gallien et al., 2012; Pereira et al., 2020), but 
rarely to predict when this would happen. Previous attempts have used 
long-term temporal series of invasion progress (e.g., Jones et al., 2022) 
or process-based models (e.g., Meentemeyer et al., 2011) to anticipate 
the species' expansion towards new territories, but these are usually 
data-intensive approaches that cannot be applied to most invasive spe
cies (but see Botella et al., 2022). Therefore, it would be interesting to 
assess to which extent standard SDMs may be used to predict both the 
spatial and temporal dimensions of the invasion process. Remarkably, 

using SDMs to predict where and when an invasive species will expand 
its range under current climatic conditions defies one of the main as
sumptions of SDMs (Foster et al., 2022), the equilibrium of the species 
distribution with climate (Guisan and Thuiller, 2005; Václavík and 
Meentemeyer, 2012), as the very question implies that some current 
absences will turn into future presences (Václavík and Meentemeyer, 
2009). In other words, if models are calibrated with data from the 
invaded territory, many (pseudo)absence records or background points 
may not actually reflect unsuitable environmental conditions (but see 
Chefaoui and Lobo, 2008; Barbet-Massin et al., 2012), and such 
incompleteness of the species' niche in the study area is expected to 
reduce SDM performance (Boyd et al., 2023; Foster et al., 2022). 
Therefore, the lack of equilibrium with climate can be seen as a limi
tation compromising the use of SDMs for accurately predicting the range 
expansion of invasive species. Alternatively, as we aim here, the lack of 
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equilibrium with climate can also be regarded as an intrinsic feature of 
the invasive species distribution, and the different types of SDMs can be 
framed under this non-equilibrium paradigm. This opens the opportu
nity to assess the ability of different SDM methods to predict the spatio- 
temporal pattern of range expansion of invasive species (i.e. the tem
poral order in which different regions will be invaded) under the 
assumption of no dispersal limitation, and potentially take advantage of 
these predictions to inform where and when intensive surveillance 
would be required for early action (Ferraz et al., 2021). 

While SDMs are regularly used to predict potential changes in species 
distributions with time (e.g., Baquero et al., 2021), these studies are usually 
motivated by a projected temporal change in abiotic conditions (e.g., 
climate warming or land-use change, Araújo and Peterson, 2012). How
ever, in the case of biological invasions, temporal changes in species dis
tributions would not only be driven by environmental changes, but are 
inherent to the process of invasion of suitable territories not yet occupied. 
Under this scenario, the rationale behind using SDMs to predict such tem
poral changes is that the most suitable territories are expected to be the ones 
likely to be invaded first. This prediction can be tested with a retrospective 
assessment of model predictions over time, to validate whether the suit
ability or the probability of presence predicted by SDMs constructed at 
different time periods also reflected the order in which different regions 
were sequentially invaded in the following years. Retrospective studies 
have proven useful for similar purposes in other fields, such as the study of 
ecosystem changes (e.g., Foster et al., 2003), but they are scarce regarding 
the temporal progression of species range expansions (but see Barbet- 
Massin et al., 2018) and, to our knowledge, they have not been applied to 
assess the ability of SDMs to predict the spatio-temporal pattern of invasion. 

The assumption of climatic equilibrium is a cornerstone of many 
ecological studies, especially those regarding biodiversity patterns or 
species distributions (Václavík and Meentemeyer, 2012; Guisan et al., 
2017). However, equilibrium is a conceptual hypothetical state that is 
never fully reached in nature. In the context of SDMs, the most widely 
used algorithms assume that species ranges are in equilibrium with 
environmental conditions, that is, that the species occupies all areas 
with suitable environments (Guisan et al., 2017). Despite the potential 
implications for the predictive accuracy of SDMs, the assumption that 
species are in equilibrium with their environment is seldom tested (but 
see Foster et al., 2022). In fact, in the case of invasive species, when a 
species is expanding its range, this assumption will likely bias the SDM, 
especially when considering absences or background data to infer the 
unsuitable environmental conditions for the species (Chefaoui and Lobo, 
2008). Thus, although presence-absence models have been shown to 
better fit species distributions when equilibrium is a (nearly) realistic 
assumption (Elith et al., 2020), this may not be the case for invasive 
species. In contrast, simpler models that are not as severely affected by 
deviations from equilibrium with climate, such as true presence-only 
models, may still provide useful information (Booth et al., 2014). 
Presence-only models, such as BIOCLIM (Busby, 1991), are not widely 
used for species distribution modelling due to their simplicity (e.g., 
delimitation of a n-dimensional environmental “envelope” with suitable 
conditions), their generally poor predictive power, and their seemingly 
unrestrictive prediction of broad ranges of suitable conditions (Araújo 
and Peterson, 2012; Booth et al., 2014). Modern implementations of this 
method (Hijmans et al., 2020) provide quantitative predictions that are 
usually transformed into binary outcomes (suitable vs. unsuitable). This 
binary transformation is used due to the complexity of interpreting 
BIOCLIM’s absolute quantitative predictions, as their values strongly 
decrease when the number of model variables increase (Beaumont et al., 
2005). However, disregarding the quantitative values in favour of a 
binary approach assumes that all regions within the environmental en
velope are equally suitable. This simplification overlooks that those 
regions towards the centre of the environmental envelope are expected 
to present more favourable conditions. Here we introduce a rescaling of 
BIOCLIM predictions into ranked suitability values, which provide more 
realistic predictions independent of the number of variables. 

In the context of species invasions, we can quantify the n-dimensional 
space of climatic conditions occupied by the species (i.e. climatic hyper
volumes, Blonder et al., 2014) to assess different facets of the equilibrium 
assumption and its potential effect on SDMs. We can consider three 
different aspects: (i) to which extent an invasive species has filled the 
climatic space available in the invaded area (i.e. climatic space filling), (ii) 
to which extent the climatic space available in the invaded area is within 
the climatic space occupied by the species in the native area (i.e. unoc
cupied, but suitable, climatic space), and (iii) to which extent the climatic 
space occupied in the invaded area is within the climatic space occupied 
by the species in the native area (i.e. climatic niche conservatism). The 
evidence of climatic niche conservatism would support the use of data 
from the native area in order to increase niche completeness for model 
calibration (Broennimann and Guisan, 2008), while the quantification of 
the unoccupied suitable climatic space will inform about the degree of 
equilibrium with climate in the invaded region and, hence, of the po
tential bias introduced when considering absence data as indicative of 
unsuitable conditions for the species. Thus, hypervolume comparisons 
between the native and invaded areas can be used as a quantitative esti
mate of climatic disequilibrium in the non-native range (Fig. 1). 

The invasion of the Asian hornet (Vespa velutina Lepeletier 1836) in 
Europe offers a great opportunity to evaluate the performance of SDMs 
under non-equilibrium conditions, while taking advantage of a large 
amount of data and a detailed record of the temporal progression of the 
invasion. The advance of this species across the European continent has 
been closely followed by active monitoring since its introduction in 
France in 2004 (Monceau et al., 2014). This facilitates the development 
of a comprehensive database of presence records, which will allow not 
only a good characterisation of the climatic space occupied by the spe
cies (Araújo et al., 2019), but also the development of a retrospective 
study for model validation, assessing how well the predicted probabil
ities yielded by models calibrated on the initial stages of the invasion 
reflected the subsequent gradual occupation of newly invaded areas. 
SDMs have been previously used to predict the invasion of V. velutina 
from ensembles of presence-absence models (Barbet-Massin et al., 2013; 
Fournier et al., 2017), using data from both the native and invaded areas 
(Villemant et al., 2011). The invasion of closely related species, such as 
Vespa mandarinia Smith, 1852, has also been recently modelled (Zhu 
et al., 2020), even accounting for the unreliability of data in the invaded 
area for model calibration (Jiménez and Soberón, 2022). Moreover, 
Barbet-Massin et al. (2018) pioneered a retrospective validation, 
assessing whether presence data from France until 2010 were able to 
predict the species distribution in France five years later. We here aim to 
go one step further and assess whether different SDM algorithms can 
predict the temporal pattern of invasion across Europe. 

In this paper, we conduct a retrospective study to assess to which 
extent SDMs may be used under non-equilibrium conditions to predict 
both the spatial and temporal dimensions of range expansion of an 
invasive species, the Asian hornet, in Europe. With this aim, we 
compiled a comprehensive database of records of V. velutina in its 
invaded and native areas. We used these data to (i) characterize the 
climatic niche occupied by the species in its native and invaded areas, as 
well as the unoccupied climatic space in the invaded area, as the basis 
(ii) to quantify the deviation from equilibrium with climate in the 
invaded region, and (iii) to evaluate the ability of three different 
modelling approaches (presence-only, presence-background and 
presence-absence), calibrated with presence records until 2013, to pre
dict the spatio-temporal pattern of invasion observed in the following 
years (2015, 2017, 2019, and 2021). 

2. Methods 

2.1. Database of climatic predictors and presences in the native and 
invaded areas 

Data on V. velutina presence in the native and invaded areas were 
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obtained from public databases, institutions and/or national organisa
tions. Data on the invasion front (UK, Germany and the Netherlands) 
were complemented with records provided by experts. Most of the Eu
ropean records were reported for the European Environment Agency 
(EEA) equal-area 10 × 10 km2 grid, which was the one used for our 
analysis. Records from other databases were cleaned and extracted to 
this grid (see Appendix S1 in Supplementary material for details). The 
year in which the first presence was reported in each grid cell informs 
about the temporal dimension of invasion in the period 2004–2021. 
Given that official data arise from reporting obligations of European 
Union countries, and given the conspicuousness and social alarm caused 
by V. velutina, monitoring programs have been very active across 
Europe, both through government institutions and citizen platforms. 
Therefore, we expect a relatively low degree of sampling incompleteness 
or spatial biases generated by uneven survey. 

Climatic variables were sourced from the CHELSA (v2.1) database 
(Karger et al., 2017) at a 30-arc-second resolution and referred to the 
European 10 × 10 km2 grid using the extract function of the ‘raster’ 
package (Hijmans et al., 2020) in R (R Core Team, 2019). To ensure that 
climatic conditions of non-invaded regions corresponded to territories 
that could, in principle, have been colonised in terms of space and time, 
we extracted climate data only for grid cells within countries that have 
reported V. velutina observations. 

2.2. Quantitative estimation of climatic disequilibrium 

To assess if V. velutina is in equilibrium with climate in Europe, we 
compared the occupied climatic space (i.e. its realised climatic niche) in 
the invaded area with the one in the native area and, more importantly, 
the occupied climatic space in the native area with the European 

unoccupied climatic space. These three climatic spaces are relevant 
because equilibrium with climate in the invaded area would be inferred 
if (i) the occupied climatic space in Europe is nested within (or equals) 
the occupied climatic space in the native area, and (ii) the unoccupied 
climatic space in Europe does not overlap with the occupied climatic 
space in the native area, as any overlap would suggest that V. velutina 
has not filled its suitable climatic space in Europe. Conversely, de
viations from equilibrium with climate would be inferred if (iii) the 
unoccupied climatic space in Europe is nested within the occupied cli
matic space in the native area, or (iv) the occupied climatic space in the 
invaded area does not overlap with the occupied climatic space in the 
native area, thus evidencing the existence of unknown suitable climatic 
conditions outside the species native range (i.e. niche shift, Broenni
mann et al., 2021). We define a new measure of climatic disequilibrium 
(D) as the ratio between the suitable but unoccupied climatic space (U) 
and the available suitable climatic space in the invaded area (A, which 
equals the sum of the occupied and unoccupied suitable climatic spaces 
in the invaded area). 

To model the species niche along the main climatic gradients, we 
performed a Principal Components Analysis (PCA) of climatic data using 
the principal function with varimax rotation in the psych R package 
(Revelle, 2022) in R. For each climatic dimension, we selected the 
variable with the highest correlation with each principal component to 
characterize the climatic space (hypervolume) of three subsets of data (i. 
e. presences in native area, presences in invaded area, and absences or 
unoccupied space in Europe) and the intersections among them, using 
the functions provided by the hypervolume package (Blonder, 2022) in R 
(see details in Supplementary Material Appendix S2). 

Fig. 1. Conceptual representation of the retrospective assessment of SDMs ability to predict the spatio-temporal pattern of invasion based on density curves and 
cumulative probabilities. (A) Map showing how range expansion over time would correspond to (B) density curves of model predictions if SDMs could be used to 
predict the temporal dimension of invasion (i.e. higher prediction values for territories that were early colonised, i.e. in year one). Note that models would be 
calibrated with data recorded in year one but independently validated against the distributions observed in the same and following years (e.g., year one, year four, 
year seven…). C) Representation of expected cumulative probability curves of prediction values for models validated with different temporal subsets. If SDMs could 
be used to predict the temporal dimension of invasion, we expect the area under the curve to increase with time given that territories invaded in the long term would 
be assigned lower prediction values than those invaded in the short term. 
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2.3. Retrospective assessment of invasion risk prediction 

We subset the species presence data according to the year of first 
presence to produce five different calibration datasets: all presences 
recorded until (i) 2013, (ii) 2015, (iii) 2017, (iv) 2019, and (v) 2021. We 
built SDMs for each calibration dataset and compared the predicted 
probabilities (i.e., invasion risk) with the observed distribution of the 
species in the following years. Note that only records from continental 
Europe were considered for model calibration, given the early stage of 
invasion of the British Islands. 

We used five different SDM approaches: (i) BIOCLIM (Busby, 1991), 
a true presence-only model that creates a set of rectilinear envelopes in 
the environmental space defined only by the presences of the species; (ii) 
MAXENT (Phillips et al., 2006), a maximum entropy model that uses 
presence data and the environmental conditions in the entire study area 
(background data) to compute the environmental suitability for the 
species; (iii) Generalised Linear Model (GLM) (McCullagh and Nelder, 
1989), a presence-absence method that can fit a combination of linear, 
quadratic and/or cubic parametric terms; (iv) Generalised Additive 
Model (GAM) (Hastie and Tibshirani, 1987), a presence-absence method 
that fits non-parametric terms as non-linear functions defined by 
smoothers; and (v) Bayesian Additive Regression Trees (BART) (Chip
man et al., 2010), a machine learning method that uses presence- 
absence data to estimate the probability of presence based on a cumu
lative set of decision trees using Bayesian formulation. 

2.3.1. SDM calibration and prediction 
To determine the minimal adequate model for each statistical 

approach, we followed an automated stepwise procedure based on 
Akaike's Information Criterion (AIC), using the stepAIC function from the 
R package MASS (Ripley et al., 2022) in the case of GLM and GAM and, 
in the case of BART, the automated procedure implemented with the 
bart.step function in the embarcadero R package (Carlson, 2020). Previ
ously, we had used the corSelect function of the R package fuzzySim 
(Barbosa, 2015) to identify pairs of highly correlated variables (R > 0.8) 
and select, within each pair, the one with a smaller Variance Inflation 
Factor (VIF) for MAXENT, GLM and GAM models. BIOCLIM does not 
require a variable reduction step, as it does not penalise the use of 
redundant predictors and, instead, aims to reconstruct the most infor
mative environmental envelope (Booth et al., 2014). Once the predictors 
were selected, we computed BIOCLIM, GLM and MAXENT models using 
the dismo R package (Hijmans et al., 2020), GAM using the gam R 
package (Hastie, 2020), and BART using the dbarts R package (Dorie 
et al., 2020). Models that require absence or background data (GLM, 
GAM, MAXENT and BART) were calibrated only with data from the 
invaded area, in order to use relatively reliable absence or unoccupied 
background cells, as the scarcity of records in the native area indicates it 
has been under-surveyed. On the contrary, presence-only models (BIO
CLIM) were separately built with two datasets: (i) only data from the 
invaded area, for comparison with the other modelling approaches, and 
(ii) data from both the native and the invaded areas, to define an 
environmental envelope with the most complete available dataset 
(Guisan and Thuiller, 2005) (see Appendix S3 in Supplementary Mate
rial for details). 

We projected all models onto the European grid to create an invasion 
risk cartography for each calibration subset and SDM approach. We 
removed the effect of sample prevalence from presence-absence models 
(GLM, GAM and BART) to obtain a value of environmental favourability 
(Real et al., 2006) in each grid cell. In the case of BIOCLIM, we here 
introduce the rescaling of model predictions into percentiles, using the 
‘quantReclass’ function (Appendix S4 in Supplementary Material, and 
also implemented in the modEvA R package (Barbosa et al., 2023). This 
function rescales the predictions into a ranked suitability value for each 
grid cell, thus informing about the suitability of climatic conditions in 
relative terms and hence which locations are more suitable than others. 
Current implementations of BIOCLIM compute a percentile distribution 

of the values of each environmental variable at known presence loca
tions. Then, the closer to the 50th percentile (the median), the more 
suitable each location is according to that variable (Hijmans et al., 
2020). However, the more variables are included in the model, the less 
suitable any location is considered, because it is less likely to be close to 
the median for all variables, and more likely to be outside the range 
observed at known presences for at least one variable. Our proposed 
rescaling of Bioclim predictions removes the dependence of the potential 
distribution on the number of variables included, and it provides more 
realistic predictions (see Results). 

2.3.2. Model validation 
To evaluate the ability of SDMs to predict the potential distribution 

of V. velutina in the European continent, we validated each model with 
the most recent dataset (all presences recorded until 2021). This informs 
about whether range expansion of an invasive species can be predicted 
by models calibrated with the distribution observed several years ago (e. 
g., all records until 2013). We used two threshold-independent evalua
tion metrics that assess different aspects of model performance: i) Boy
ce's index (Hirzel et al., 2006) and ii) AUC (Fielding and Bell, 1997). In 
the case of models calibrated with all data (i.e. 2021-model calibration), 
we also performed a k-fold spatial block cross-validation (Valavi et al., 
2019) to validate the current prediction of V. velutina expansion (i.e. 
with the most up-to-date dataset) while ensuring that we did not use the 
same dataset for calibration and evaluation (see Appendix S3 in Sup
plementary material for details). 

To assess if SDMs could predict the spatio-temporal pattern of in
vasion (i.e. which localities are likely to be invaded first), we assessed 
how the distribution of predictions of models calibrated with 2013 data 
shifted from sites invaded earlier to sites invaded later in time, and to 
sites not invaded (yet). The reasoning we follow is that a model accu
rately accounts for the spatio-temporal pattern of invasion if predicted 
values are higher in locations invaded earlier, lower in those invaded 
later, and even lower in those not invaded yet (see Fig. 1, and Appendix 
S3 in Supplementary Material for details). To quantify this, we 
compared (i) kernel density and (ii) cumulative probability curves of 
model predictions for sites invaded at different times (i.e. 2013, 2015, 
2017, 2019 and 2021). These curves should shift regularly as a function 
of the year of invasion if the model were actually predicting the spatio- 
temporal pattern of invasion. 

Presence records of V. velutina are available from the Dryad Digital 
Repository doi:https://doi.org/10.5061/dryad.931zcrjr8. R code is 
available as Supplementary Material (Appendix S5). 

3. Results 

3.1. Database of presences in the native and invaded areas 

We assembled a total of 159,010 records of V. velutina in the Euro
pean continent, collected from 2004 to 2021 (Appendix S6 and Table S1 
in Supplementary material). These records were transferred to a total of 
6286 cells in a 10 × 10 km2 grid. We also compiled 524 records in the 
native area, that corresponded to 275 cells in a 10 × 10 km2 grid (Fig. S1 
in Supplementary material). 

3.2. Quantitative estimation of climatic disequilibrium 

V. velutina was recorded over a wide climatic range, both in the 
native and invaded areas. For instance, Annual Mean Temperature 
(bio1) ranged from − 6.3 ◦C to 26.9 ◦C in the native area and from − 7.8 
◦C to 19.2 ◦C in the invaded area (see Table S2 in Supplementary ma
terial). Four main climatic dimensions were identified by the PCA 
analysis, with the first component corresponding to variables associated 
with temperature (RC1, explained variance = 42 %), the second 
component to precipitation (RC2, explained variance = 22 %), the third 
component to temperature range (RC3, explained variance = 17 %), and 
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the fourth component to isothermality (RC4, explained variance = 9 %, 
see Table S3 in Supplementary Material). Thus, we selected the 
following variables for the comparison of climatic niches: mean annual 
daily mean air temperatures averaged over one year (◦C, bio1), pre
cipitation amount of the wettest month (kg m− 2, bio13), annual range of 
air temperature (◦C, bio7) and isothermality, the ratio of diurnal vari
ation to annual variation in temperatures (◦C, bio3). 

When we compared the climatic space in the native and invaded 
areas (Fig. 2), we observed that the unoccupied climatic space in Europe 
is mostly nested within the occupied climatic space in the native area, 
and that the occupied climatic space in the invaded area is nested within 
both (Fig. 2-A). This result points to a deviation from equilibrium with 
climate in Europe, given that there are regions with similar climatic 
conditions as those in the native area that have not been invaded yet. In 
Fig. 2, this corresponds to the climatic space where the red and purple 
points overlap. With the overlap information and the hypervolumes of 
each of the study areas (see Fig. S2 in Supplementary material), we can 
estimate the degree of climatic disequilibrium of V. velutina in Europe as 
follows: First, we estimate the hypervolume of the available climatic 
niche in Europe (available suitable climatic space, A = 804,680.8) as the 
sum of the fractions of occupied and unoccupied climatic spaces that are 
nested within the realised niche of the species. Second, we estimate the 

hypervolume of the unoccupied climatic space that is nested within the 
climatic conditions already occupied by the species in the native area 
(unoccupied suitable climatic space, U = 566,477.2). Third, we estimate 
the hypervolume of the occupied climatic space in the invaded area that 
does not overlap with the climatic space occupied in the native area 
(new climatic space in the invaded area, I = 19,135.5). In this way, we 
introduce a measure of disequilibrium (D) as the ratio between unoc
cupied suitable climatic space and the available suitable climatic space 
(D = U/A). Finally, we measure the niche shift (NS) as the ratio between 
the new climatic space in the invaded area, and the climatic space 
occupied in the native area (N) (NS = I/N). For V. velutina in Europe, we 
found a disequilibrium of D = 0.70, which suggests that the species is 
still far from occupying all suitable climatic space in the invaded area. 
We also observed a NS = 0.0007, which suggests practically no niche 
shift so far. 

3.3. Retrospective assessment of invasion risk predictions 

3.3.1. SDM calibration and prediction 
The number of predictors included in the final models ranged from 

five (BART 2021) to nine (BART 2013). Only isothermality (bio3) and 
precipitation seasonality (bio15) were included in all models (see Table 

Fig. 2. A) Representation of the climatic space occupied in Europe, in the native area and the unoccupied climatic space in Europe. The climatic space has been 
summarized into four main climatic gradients, identified by a Principal Component Analysis: mean annual daily mean air temperatures averaged over one year 
(bio1), precipitation amount of the wettest month (bio13), annual range of air temperature (bio7) and isothermality, the ratio of diurnal variation to annual variation 
in temperatures (bio3). Yellow and red represent the occupied niche and the unoccupied climatic space in the invaded area, and violet represents the climatic niche of 
the species in its native area. B) Conceptual representation of the calculations of the suitable climatic space (occupied and unoccupied) in Europe, which is used for 
the estimation of climatic disequilibrium and niche shift in the invaded area. Disequilibrium (D) is the ratio between the unoccupied suitable climatic space (U) and 
the available suitable climatic space in the invaded area (A). Niche shift (NS) is the ratio between the new suitable climatic space in the invaded area (I) and the 
climatic space occupied in the native area (N). Areas in panel B are not to scale, so they are not proportional to the actual climatic hypervolumes. Please also note that 
hypervolume values depend on the random sampling of points for kernel estimation by function hypervolume(). (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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S4 in Supplementary material for details). Nevertheless, all models 
included variables related to temperature, precipitation, seasonality and 
isothermality. 

All presence-absence and presence-background models calibrated 
with 2021-data predicted similar potential distributions, including ter
ritories where the species is well established, such as northern and 
western Iberia, France or Belgium, as well as wider distributions in 
recently or still scarcely invaded territories, such as the Netherlands and 
north-western Germany. In addition, all models agreed that the Italian 
peninsula and the British Isles are favourable for the establishment of the 
species. In contrast, presence-only models (BIOCLIM), especially the one 
calibrated with data from both the invaded and native areas, predicted 
wider potential distributions, mostly towards the east and the north of 

the continent. Thus, presence-absence and presence-background pre
dictions based on the invaded area were nested within the presence-only 
predictions based on native and invaded areas, with GLM, GAM and 
MAXENT predicting approximately 60 % of the potential distribution 
area predicted by BIOCLIM (invaded and native areas), while BART 
predicted 30 % of it. 

Similar results were observed for SDMs calibrated with 2013 data 
(Fig. 3). BIOCLIM models predicted a larger potential distribution area, 
mostly when calibrated with data from both the native and invaded areas. 
However, the differences between BIOCLIM and the rest of the models 
were bigger than in 2021, mainly due to the scarcity of records in 2013, 
so GLM, GAM and BART predicted 20 % of the area predicted by BIO
CLIM (invaded and native areas), while MAXENT predicted 15 % of it. 

Fig. 3. Prediction of V. velutina distribution according to different correlative SDMs calibrated with presences observed until 2013. BIOCLIM prediction has been 
converted into ranked suitability values and GLM, GAM, and BART into favourability values according to the species prevalence. 
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3.3.2. Model validation 
To validate the SDMs against the species distribution in 2021, we 

measured the AUC and Boyce indices (Table S5 in Supplementary ma
terial). All SDMs discriminated well between presences and absences 
(AUC ≈ 0.70 or higher). However, there was a tendency towards lower 
AUC values when models were calibrated with more recent data, after 
range expansion, which is consistent with the AUC being negatively 
correlated with prevalence or with relative occurrence area (e.g., Lobo 
et al., 2008). In fact, the largest AUC values for each modelling approach 
were observed when calibrating with 2013 data, except in the case of 
MAXENT and BIOCLIM (invaded area). Similarly, predictions differed 
markedly from a random prediction (Boyce ≈1, Table S5 and Fig. S3 in 
Supplementary material). This result supports the ability of all models to 
predict areas that will be invaded several years later (i.e. eight years, 
from 2013 to 2021). We also performed a k-fold spatial block cross-vali
dation (Valavi et al., 2019) for models calibrated with 2021 data, to 
validate the current prediction of V. velutina expansion (i.e. with the 
most up-to-date dataset) while ensuring that we did not use the same 
dataset for calibration and evaluation. In this case, presence-absence 
models showed higher AUC values than presence-only and presence- 
background models (Table S5). 

To assess whether SDMs could predict the spatio-temporal pattern of 
invasion, we measured the shift in the density curves of model pre
dictions according to the year in which the presence was first observed 
at a locality, as well as to those in which the species has never been 
recorded to the moment. The density curves of BIOCLIM, GLM and GAM 
correctly reflected the spatio-temporal pattern of invasion, with the 
density curves shifting to the left with time and the cumulative proba
bility curves shifting downwards from recently to formerly invaded 
areas (Fig. 4). However, the BIOCLIM model calibrated with data from 

the native and invaded areas was the only one that had a relatively flat 
curve in the lower range of prediction values (i.e. from 0 to 0.5), 
evidencing that fewer presences observed in later years had been given 
low predicted suitability values. This is also observed with the cumu
lative probability curves, as these probabilities were low and sequen
tially increased from 2013 to 2021 (see Fig. 4). In contrast, in the 
presence-absence and presence-background model predictions, the 
spatio-temporal pattern is not clearly discernible and, importantly, in 
sites with confirmed presences in later years they predict very low values 
of favourability/suitability (see Fig. S4), virtually identical to sites that 
were never occupied. 

4. Discussion 

Our results show that presence-only models such as BIOCLIM can 
effectively predict the spatio-temporal pattern of invasion of V. velutina 
when predictions are rescaled based on percentiles and the model is 
calibrated with data from both the native and invaded areas. Adopting a 
non-equilibrium perspective is essential when modelling invasive spe
cies, because many absences are expected to turn into presences as the 
species expands its range towards new territories. While presence-only 
models would fulfil such requirement from a conceptual standpoint, 
they are not usually favoured in this type of studies (Elith et al., 2020; 
Franklin, 2023). However, the percentile-based rescaling procedure 
proposed here shows its potential usefulness in a temporal context, given 
that rescaled BIOCLIM models predicted higher suitability values for 
sites that were invaded earlier in time and, importantly, did not predict 
low suitability values for sites that were eventually occupied years later. 
The better performance of such presence-only models can be attributed 
to the fact that, by construction, these models are less biased by the lack 

Fig. 4. Density plots of the distribution of 2013-model predictions for cells where presence data were observed in the following years (2013, 2015, 2017, 2019 and 
2021) or were never colonised (absences). A curve is shown for absences and for each comparison year, which includes only data for the cells in which the presence 
was recorded, for the first time, that year. If models were able to predict the spatio-temporal pattern of invasion, a leftward shift with year and then to absences (from 
violet to yellow curves) is expected (panels a, c, e, g, i, k). Cumulative probability curves of 2013 predictions compared to presence data recorded from 2013 to 2021 
and absences. If models were able to predict the spatio-temporal pattern of invasion, the cumulative probability curves are expected to shift downwards from ab
sences to invaded areas recently and then to formerly invaded ones, i.e. from yellow to violet (panels b, d, f, h, j, l). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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of equilibrium, given that (i) presences from under-surveyed native 
areas can be also used to calibrate the model, thus identifying a wider 
range of climatic conditions that are suitable for the species, even if the 
fundamental niche may not be fully represented, and (ii) model per
formance is not compromised by the potential unreliability of absence 
data in the yet-to-be invaded areas (i.e. many suitable areas are likely 
unoccupied because the invasive species has not reached them yet, and 
not because they are unsuitable). The ability to predict the spatio- 
temporal pattern of invasion with presence-only models was possible 
by introducing a transformation of model predictions to ranked suitability 
values based on percentiles. This methodology can be very useful for 
decision-makers and managers, as it provides a probabilistic prediction 
of both (i) the temporal dimension of species range expansion, and (ii) 
the potential distribution range in the long term. Such information 
would allow prioritizing monitoring efforts in the short term, without 
losing sight of the potential risks in the long term. 

Deviations from equilibrium between species distribution ranges and 
climatic conditions can be expected due to the very nature of the inva
sion process (Barbet-Massin et al., 2018; Pili et al., 2020), but they 
should still be assessed for each species under study (Boyd et al., 2023). 
Towards this goal, here we have used hypervolumes to compare the 
climatic space occupied in the native and invaded areas, as well as with 
the available, but not yet occupied, climatic space in the invaded area. 
From these hypervolumes, a newly introduced measure of disequilib
rium (D) can be computed. We note that D is a relative measure, because 
its absolute value might depend on the selected climatic variables and/ 
or the number of dimensions used to estimate the climatic space. 
However, despite of being relative, this measure of disequilibrium 
would still be useful for comparison among time periods, species and/or 
geographic regions. In this study, the lack of equilibrium was confirmed 
for V. velutina by the existence of climatic conditions in European re
gions not occupied by the species that are within the occupied climatic 
space in the native area. Deviations from equilibrium imply that absence 
data collected in the invaded area cannot be used to infer that such 
climatic conditions are unsuitable for the species (Václavík and Meen
temeyer, 2009) and hence should be considered unreliable absences 
(Chefaoui and Lobo, 2008; Barbet-Massin et al., 2012). In this context, 
we would rather opt for the term “temporary absences”, i.e., places 
where the species has not yet arrived. It should also be noted that our 
results currently support the hypothesis of climatic niche conservatism 
in the invaded range, as opposed to the presence of niche shifts 
(Broennimann et al., 2021) between the invaded and native areas. A 
similar result has been observed for a closely related invasive species, 
V. mandarinia (Zhu et al., 2020), and it supports the use of presence data 
from the native area in model calibration to reduce biases introduced by 
the lack of equilibrium with climate in the invaded range (Franklin, 
2023). 

Rescaled presence-only models calibrated with data from both the 
native and invaded areas outperformed other modelling approaches in 
terms of predicting the spatio-temporal dimension of invasion, as well as 
the species distribution range in the medium term. BIOCLIM models 
delimit the environmental space tolerable by a species as a set of n- 
dimensional “boxes” bounded by the extreme and core conditions 
endured by the species (Booth et al., 2014). Thus, the incorporation of 
climatic data from the native area improves the identification of such 
conditions that represent the boundaries of the species' climatic niche 
(Guisan and Thuiller, 2005; Broennimann and Guisan, 2008). It can then 
be assumed that the sites with climatic data within an n-dimensional box 
are suitable for the species, and the rest are unsuitable (Beaumont et al., 
2005). This has led to presence-only predictions being often interpreted 
in such qualitative terms (suitable vs. unsuitable), thus giving equal 
weight to climatic conditions near the limits of the species climatic niche 
as to climatic conditions near its niche optimum. Current implementa
tions of the BIOCLIM method (e.g., in R package ‘dismo’) provide a 
continuous prediction by computing the environmental similarity of a 
location to a percentile distribution of the environmental values at 

species occurrence locations (Hijmans et al., 2020). However, the size of 
the predicted distributions is negatively correlated with the number of 
variables in the model. Thus, while including more variables should, in 
theory, improve the information in the model, it fatally results in smaller 
predicted ranges. We have overcome this limitation by reclassifying 
BIOCLIM predictions into percentiles, in what we call ranked suitability. 
This transformation allows a simple and intuitive method such as BIO
CLIM, even when built from distributions far from equilibrium in the 
invaded area, to adequately predict the spatio-temporal pattern of spe
cies range expansion, with the great advantages of transparency, ease of 
understanding, and lack of need for (pseudo)absence or unoccupied 
background data. 

It should be noted that when a species is far from equilibrium in the 
native area, presence data would still represent an incomplete fraction of 
the fundamental niche. In that situation, our ability to estimate the 
degree of equilibrium will be hampered and the performance of all 
models, including presence-only ones, will be limited. Moreover, if 
presence data is incomplete due to sampling biases, we expect an 
overestimation of disequilibrium and, again, a lower performance of all 
models, including presence-only ones. Regardless, BIOCLIM has several 
potential advantages over more complex methods which can make it 
particularly useful in invasive species modelling, such as 1) being able to 
produce models even when very limited occurrence data are available; 
2) making fewer assumptions of constancy in the species-climate re
lationships; 3) not being biased by correlations among predictor vari
ables, which may differ between native and invaded areas; and 4) its 
rectilinear shapes including climates that are part of the fundamental 
niche but may be unavailable in invaded areas, thus not overly 
restricting niche envelopes (Rödder et al., 2013; Guillory and Brown, 
2021). 

In conclusion, the ability to predict the spatio-temporal pattern of 
invasion using presence-only models can become a valuable tool for 
optimal surveillance of invasive species, as it would allow identifying 
which locations will be colonised first, thus optimizing early monitoring 
and timely action (Barbet-Massin et al., 2018). Therefore, predictions of 
invasion risk would inform not only about where climatic conditions are 
suitable for the establishment of the species, but also the sequential 
order in which the species will likely become established in those areas. 
This approach is particularly useful in non-equilibrium scenarios, in 
which many of the absence data can be regarded as temporary, as they 
will inevitably turn into presence data with time. Our study shows that, 
by rescaling BIOCLIM predictions, the predictive capacity of this simple 
and easy-to-understand model can be visibly improved, even accounting 
for the temporal dimension of invasion long before the species ap
proaches climatic equilibrium. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.biocon.2023.110361. 
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