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Multiplicative partition of true diversity yields independent alpha
and beta components; additive partition does not
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The need for a measure of beta diversity independent

of alpha diversity was stressed long time ago (Wilson

and Shmida 1984), in order to ensure a ‘‘useful ap-

plication of a measure [of beta diversity] to systems with

different alpha diversities.’’ It should be noted that this

requirement refers to the independence of beta diversity

of mean alpha diversity, and not to the independence of

beta diversity with regard to differences in alpha

diversity between sites. The latter issue was addressed

by several authors (Harrison et al. 1992, Lennon et al.

2001, Koleff et al. 2003, Baselga 2007) because beta

diversity measures that are dependent on the variation in

alpha diversity consider spatial turnover and nestedness

patterns as being equivalent (Baselga et al. 2007).

However, the dependence of beta diversity on the mean

value of alpha diversity is even more critical because

it compromises the comparability of beta diversity
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measures among systems with different mean alpha

diversity.

Focusing on the latter issue, Jost (2007) showed that

different formulations (multiplicative, additive, and

others) are required to partition the different diversity

indices (i.e., species richness, Shannon, Gini-Simpson)

into independent alpha and beta components. Jost

writes that ‘‘when these new alpha and beta components

are transformed into their numbers equivalents (effective

numbers of elements), Whittaker’s multiplicative law

(alpha 3 beta ¼ gamma) is necessarily true for all

indices.’’ I follow Jost (2007) in using the term ‘‘true

diversity’’ for diversity measured in terms of species

counts, since species richness is its own numbers

equivalent. Thus, when referring to true diversity, the

only way to obtain independent alpha and beta

components involves using the multiplicative partition.

Although the rationale behind this assertion is not

explicit in Jost’s paper, it runs as follows. By using this

multiplicative law for groups of communities sharing the

same proportion of species, we will obtain the same

value of beta diversity regardless of the number of

species in these groups. In other words, beta diversity

will be computed to be equal for (1) a set of two

communities with alpha ¼ 10 and 5 species in common

and for (2) a set of two communities with alpha ¼ 100

and 50 species in common. This is because multiplicative

beta diversity depends on the proportion of shared

species. Thus, if we replicate the species composition of

the analyzed communities, the beta value should not

change if it is independent of richness. Ricotta (2008)

termed this requirement the ‘‘replication principle,’’

proposing it as a test for the independence of a beta

diversity measure with regard to richness. Ricotta

showed that additive beta diversity based on species

counts suffers the major drawback of being dependent

on species richness, in contrast to multiplicative beta.

The dependence of additive beta on species richness was

also recently noted by Zeleny (2009) and Manthey and

Fridley (2009) in a different context.

Veech and Crist (2010; referred as VC throughout the

text) proposed an evaluation of the assumed indepen-

dence of multiplicative beta diversity on alpha diversity,

going beyond theoretical discussion and aiming to

provide empirical evidence for the dependence or

independence of beta diversity measures. In a simulation

procedure, they compared the performance of the

additive and multiplicative partition of true diversity.

Veech and Crist concluded that neither additive nor

multiplicative beta diversity is independent of alpha

diversity, and that the dependence of multiplicative beta

is even greater than that of additive beta. Here, I

evaluate their simulation procedure and provide new

approaches. All computations were performed in R (R

Development Core Team 2006). I will show that (1) the

patterns of dependence between multiplicative beta and

alpha are the outcome of the particular conditions of

VC’s simulation procedure, which imposed severe

restrictions on the possible values of alpha and gamma,

and therefore beta; (2) when these restrictions are

eliminated, multiplicative beta is completely indepen-

dent of alpha but additive beta is not.

The number of communities does matter

The first drawback of the VC simulation is its failure

to specify the number of communities (N ). As they

acknowledge in their paper, N is not consistent across

the simulated cases (pairs of alpha and gamma). For

example, a possible pair of values in VC simulation is

gamma ¼ 1000, alpha ¼ 10. This combination is only

possible for N . 100 (i.e., you cannot obtain a gamma¼
1000 with a lower number of communities when mean

alpha ¼ 10). Another possible pair of values yielded by

the VC simulation routine could be gamma¼ 100, alpha

¼ 10, and this is only possible for N . 10. However, N

should be a fixed parameter because for a given value of

gamma (which is the first variable sampled by the VC

procedure) the distribution of possible alpha values is

determined by N. For example, for gamma ¼ 1000 the

maximum value of alpha is always 1000 (all the

communities have identical composition) but the mini-

mum value of alpha is 1000/N (i.e., 200, 20, 2 for N¼ 5,

50, 500, respectively). Therefore, to ensure that the

simulation procedure randomly takes into account all

the possible combinations of alpha and gamma, it is

strictly necessary to set a defined N.

Fig. 1 shows the pair-wise relationships between

alpha, beta and gamma derived from three simulations

for N ¼ 5, 50, and 500. This simulation procedure

(Procedure 1; see R script in Supplement) follows VC in

that gamma was set equal to a random number between

10 and 1000 drawn from a uniform distribution, but

differs in that alpha was set equal to a random number

between gamma/N and gamma drawn from a uniform

distribution. Thus, the only difference is the fixed N. The

number of replications (pairs of gamma and alpha) was

set to 10 000. As reported by VC, multiplicative beta

showed a pattern of dependence on alpha diversity,

although the pattern was quite different depending on

N. The most conspicuous result was, however, that

multiplicative beta showed no pattern when plotted

against gamma, whereas additive beta showed clear

patterns of dependence on both alpha and gamma.

The order of simulation routines does matter

A second and more critical drawback of the VC

simulation is the assumption that different routines are

equivalent, in that the order in which alpha and gam-

ma distributions are generated has no influence in the

outcome. I have tested this assumption by performing

a new simulation procedure that began by setting the

value of alpha randomly (Procedure 2; see R script in

Supplement). Fig. 2 shows the pair-wise relationships

between alpha, beta, and gamma derived from three

simulations for N ¼ 5, 50, and 500. In these new

simulations, alpha was set equal to a random number
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FIG. 1. Pair-wise relationships between alpha, gamma, and multiplicative or additive beta diversity as simulated by Procedure
1. See The number of communities does matter for details.
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FIG. 2. Pair-wise relationships between alpha, gamma, and multiplicative or additive beta diversity as simulated by Procedure
2. See The order of simulation routines does matter for details.
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between 1 and 100 drawn from a uniform distribution,

and gamma was set equal to a random number be-

tween alpha and alpha 3 N drawn from a uniform

distribution. The number of samples (pairs of alpha

and gamma) was set to 10 000. The most striking result

of these new simulations was that, in contrast with

Procedure 1, no pattern of dependence appeared be-

tween multiplicative beta and alpha. Instead, a pattern

of dependence between multiplicative beta and gamma

was found. Dependence of additive beta diversity on

both alpha and gamma was found again, but using

Procedure 2 the pattern is extremely marked in the case

of gamma. Therefore, it seems clear that dependence

patterns of multiplicative beta diversity are related to

the simulation procedure selected. Multiplicative beta

seemed to be dependent on the variable (alpha or

gamma) determined second during each simulation.

When random values of gamma are set first, and

thereafter random values of alpha (consistent with the

selected gamma and N values) are set, then multipli-

cative beta shows dependence on alpha. However,

when random values of alpha are set first, and

thereafter random values of gamma (consistent with

the selected alpha and N values) are set, then mul-

tiplicative beta shows dependence on gamma.

Reasons for the dependence patterns

At this point, elements are available to interpret the

results reported here as well as those published by VC.

Firstly, the influence of the order of simulations on the

dependence patterns results from the arbitrary limits of

the distribution of the variable set in first place in the

simulation (gamma or alpha). Secondly, the higher the

number of communities, the higher the influence of the

former arbitrary limits.

The limits of the first distribution are arbitrarily

selected. In the first set of simulations, Procedure 1

bounds gamma between 10 and 1000. Each value of

gamma is then randomly associated with any of all the

possible values of alpha consistent with the specified N.

For this reason, not all possible values of gamma con-

sistent with the specified N are available for certain

values of alpha, since we have arbitrarily limited gamma

to be between 10 and 1000. For example, for N¼ 5 and

gamma ¼ 1000, one possible value is alpha ¼ 1000 (as

any other value between 200 and 1000). However, for

alpha ¼ 1000, the only possible value of gamma in this

simulation is 1000, hence the dependence pattern

between multiplicative beta and alpha in Procedure 1.

However the limit of gamma and the forced low value of

multiplicative beta are arbitrary and not caused by a real

association between alpha and multiplicative beta. There

is no reason to exclude the possibility of a value of alpha

¼ 1000 associated with any value of gamma . 1000. In

fact, it is much more unlikely to observe five different

communities with exactly the same set of 1000 species.

The shape of the pattern depends on N because below

the limit of alpha ¼maximum gamma/N, for any given

alpha all the possible values of gamma are permitted by

the simulation procedure. Thus, no dependence pattern

appears below 200, 20, and 2 for N ¼ 5, 50, and 500,

respectively (Fig. 1). However, for values of alpha .

maximum gamma/N, the possible values of gamma are

increasingly restricted with increasing alpha. Thus the

distribution of multiplicative beta is artificially bounded

to decreasing low values.

In Procedure 2, alpha is bounded between 1 and 100.

Thereafter each value of alpha is randomly associated to

any of all the possible values of gamma consistent with

the specified N. Using this method, not all the possible

values of alpha consistent with the specified N are

available for some values of gamma, since we have

arbitrarily limited alpha to be between 1 and 100. For

example, for N¼5 and alpha¼100, one possible value is

gamma ¼ 500 (among many others between 100 and

500). However, for gamma¼500, the only possible value

of alpha in this simulation is 100, hence the dependence

pattern between multiplicative beta and gamma in

Procedure 2. However, this is again an arbitrary

constraint of the simulation. As found in Procedure 1,

the pattern depends on N because below the limit of

gamma¼maximum alpha, for any given gamma all the

possible values of alpha are permitted by the simulation

procedure (no pattern appears below gamma ¼ 100).

Since gamma ¼ 100 is a different proportion of

maximum gamma for N ¼ 5, 50, and 500, respectively,

the dependence patterns exhibit different shapes (Fig. 2).

For values of gamma . maximum alpha, the possible

values of alpha are increasingly restricted to high values

with increasing gamma. Thus the distribution of

multiplicative beta is artificially bounded to increasing

high values.

An appropriate test for each question

The problem generated by the arbitrary limits of

distributions cannot be solved if one aims to test the

independence of beta simultaneously on alpha and

gamma. Once the range of the first variable is fixed

and all the possible values of the second variable are

included, then, unavoidably, all the possible values of

the first variable are not available for some values of the

second one. But this difficulty is only an apparent one. If

one wants to test the independence between beta and

alpha, the correct procedure is to consider a range of

possible values of alpha, and then include in the

simulation all the possible values of gamma consistent

with the distribution of alpha. This is Procedure 2. On

the other hand, if one wants to test the independence

between beta and gamma, the correct procedure is to

consider a range of possible values of gamma, and then

include in the simulation all the possible values of alpha

consistent with the distribution of gamma. This is

Procedure 1. In sum, each simulation is appropriate to

test for the dependence of beta on only gamma
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FIG. 3. Relationship between joint probabilities (P) and the products of marginal probabilities for multiplicative (solid circles)
and additive beta diversity (open circles). Marginal and joint probabilities were computed for random events involving pairs of beta
and gamma values in Procedure 1 and pairs of alpha and beta values in Procedure 2. The diagonal lines mark the 1:1 relationship
(perfect fit between joint P and the product of marginal P). Histograms show the distribution of differences between joint P and the
product of marginal P for multiplicative beta diversity (black) and additive beta diversity (gray).
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(Procedure 1) or alpha (Procedure 2), but not on both.

In both cases, multiplicative beta passes the test, as no

pattern of dependence was detected between beta and

alpha (Fig. 2) or gamma (Fig. 1). In contrast, additive

beta is shown to be dependent on alpha and gamma, as

previously known (Ricotta 2008).

In my opinion, the plots shown in Figs. 1 and 2 are

conclusive. However, for comparability with VC re-

sults, I computed the marginal and joint probabilities

of random events involving pairs of multiplicative beta

or additive beta and gamma or alpha to assess their

dependence. Thus, for Procedure 1, I selected two

random probability, P, values between 0.1 and 0.9 (i.e.,

P(G) and P(B)) and computed the quantile of gamma

corresponding to P(G) (G), as well as the quantiles of

multiplicative beta and additive beta corresponding to

P(B) (BM and BA, respectively). The joint probabilities

of gamma , G and multiplicative beta , BM (P(G,

BM)), as well as gamma , G and additive beta , BA

(P(G, BA)), were computed empirically as the propor-

tion of pairs in which gamma was lower than the

selected quantile of gamma, and beta was lower than

the selected quantile of beta. If the measure of beta is

independent of gamma, the joint probability of a pair

of random events (P(G, BM) or P(G, BA)) should be

equal to the product of the marginal probabilities

(P(G)P(B)). For Procedure 2, the same was done but

using a random probability P(A) corresponding to a

quantile of alpha, instead of P(G). As can be observed

in Fig. 3, when assessing the independence of beta with

regard to alpha or gamma using the appropriate

procedure, joint probabilities are almost equal to the

products of marginal probabilities for multiplicative

beta (mean absolute difference , 0.0017, maximum

absolute difference , 0.0047 in all simulations).

Moreover, differences have an unbiased distribution

centered at zero (see histograms in Fig. 3). On the

contrary, for additive beta, joint probabilities are

markedly different from the products of marginal

probabilities (mean absolute difference between 0.062

and 0.069, maximum absolute difference between 0.12

and 0.13 in all simulations). Differences have a

positively biased distribution (see histograms in Fig.

3). In sum, multiplicative beta diversity is methodolog-

ically independent of gamma and alpha diversity,

whereas additive beta diversity is intrinsically depen-

dent on both gamma and alpha diversity (Figs. 1 and

2, respectively).

Conclusion

The empirical tests demonstrated that multiplicative

partition of true diversity yields independent alpha and

beta components, but additive partitioning does not. As

stressed by Jost (2010), this conclusion is not particular

for species richness but can be generalized to any di-

versity measure. The appropriate partitioning for dif-

ferent diversity measures (Shannon, Gini-Simpson) is

that which is equivalent to the multiplicative partition-

ing of its number equivalents (Jost 2007). Therefore, the

point raised here is independent of the inclusion of

incidence or abundance measures in the diversity index,

and should be taken into account prior to other

considerations, such as the effect of sample size and

undetected species (Chao et al. 2005, 2006) or discrim-

ination between turnover and nestedness patterns

(Baselga et al. 2007, Baselga 2010). As a conclusion,

using the additive partition of true diversity, one would

always find a correlation between alpha and beta

diversity patterns derived from the intrinsic dependence

between both measures. In contrast, using multiplicative

partitioning, one can assess if there is any relationship

between alpha and beta diversity patterns. If found, this

relationship could be analyzed as a meaningful biolog-

ical pattern (Jost 2010). As reported previously by

Wilson and Shmida (1984), alpha and beta diversity

patterns are the result of different ecological and

biogeographical processes. Thus, if we are to under-

stand the mechanisms underlying biodiversity we need

to assess alpha and beta patterns using truly indepen-

dent measures. These measures are provided by the

multiplicative partitioning of true diversities, or the

equivalent formulations for other diversity measures

(Jost 2007).
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SUPPLEMENT

R scripts for conducting the simulations described in the main text (Ecological Archives E091-135-S1).
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