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Spatial turnover of biological communities is determined by both dispersal and envi-
ronmental constraints. However, we lack quantitative predictions about how these 
factors interact and influence turnover across genealogical scales. In this study, we have 
implemented a predictive framework based on approximate Bayesian computation 
(ABC) to quantify the signature of dispersal and environmental constraints in com-
munity turnover. First, we simulated the distribution of haplotypes, intra-specific lin-
eages and species in biological communities under different strengths of dispersal and 
environmental constraints. Our simulations show that spatial turnover rate is invari-
ant across genealogical scales when dispersal limitation determines the species ranges. 
However, when environmental constraint limits species ranges, spatial turnover rates 
vary across genealogical scales. These simulations were used in an ABC framework to 
quantify the role of dispersal and environmental constraints in 16 empirical biologi-
cal communities sampled from local to continental scales, including several groups of 
insects (both aquatic and terrestrial), molluscs and bats. In seven datasets, the observed 
genealogical invariance of spatial turnover, assessed with distance–decay curves, sug-
gests a dispersal-limited scenario. In the remaining datasets, the variance in distance–
decay curves across genealogical scales was best explained by various combinations of 
dispersal and environmental constraints. Our study illustrates how modelling spatial 
turnover at multiple genealogical scales (species and intraspecific lineages) provides 
relevant insights into the relative role of dispersal and environmental constraints in 
community turnover.
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Introduction

Understanding the drivers of variation of biological com-
munities is of major importance both for fundamental and 
applied research. Species distributional ranges and their 
collective expression translated in spatial turnover across 
biological communities are mostly controlled by extrinsic 
environmental factors and the intrinsic ability of species to 
expand their distribution ranges. There is a large body of 
knowledge attempting to statistically discriminate the role of 
these two major processes (Borcard et al. 1992, Tuomisto et al. 
2003, Gilbert and Lechowicz 2004, Peres-Neto et al. 2006, 
König et al. 2017). However, given that dispersal limitation is 
an inherently spatially-structured process and environmental 
factors are also spatially auto-correlated, most studies have 
concluded that there is a large amount of variance in commu-
nity composition that cannot be uniquely attributed to either 
environmental constraint or dispersal limitation (Smith and 
Lundholm 2010, Tuomisto et  al. 2012). To move forward, 
one needs to go beyond correlative approaches and tackle the 
causal nature of the spatial structure of community variation. 
This is particularly important in a context of climate change 
because, if species are strongly limited by their rate of dis-
persal (Svenning and Skov 2007), they might not be able to 
adjust their ranges by swiftly tracking suitable environments 
as they change (Araújo and Pearson 2005, Lenoir et al. 2020, 
Taheri  et  al. 2021). We thus need to develop a predictive 
framework to unequivocally link different combinations of 
dispersal and environmental constraints to the biodiversity 
patterns we observe in the real world.

Towards building such predictive framework, we examine 
the independent signatures of dispersal and environmental 
constraints on community turnover at both species and hap-
lotype levels (genetic variants) (Baselga et al. 2015, Gómez-
Rodríguez et al. 2019). Uniform processes, such as dispersal 
limitation, may govern the distribution of both species and 
haplotypes and this was the tenet of the species-genetic diver-
sity correlation (SGDC) (Vellend 2003, Vellend and Geber 
2005). These seminal studies have helped improve under-
standing of how different causal factors can influence the cor-
relation between species and genetic diversity (Vellend et al. 
2014, Vellend 2016). Here, we focus on the spatial turnover 
of community composition at both the species and haplo-
type levels. Community turnover between two sites is usually 
measured at the species level, as the proportion of species that 
are present at both sites (increasing community similarity) or 
only one of them (decreasing similarity). The same principle 
applies to haplotypes: community turnover at the haplotype 
level is driven by the proportion of haplotypes found at both 
sites or in just one of them. It follows that understanding the 
process of haplotype and species range expansion is critical 
for understanding the underlying processes driving commu-
nity turnover.

The spatial distribution of haplotypes in neutrally evolving 
loci are uniquely controlled by dispersal limitation because 
they are the result of birth-and-death events and stochas-
tic dispersal within the range of the focal species (Slatkin 

1985). In contrast, species ranges can be controlled by both 
1) dispersal limitation via the intrinsic ability of organisms 
to expand their ranges, and 2) environmental constraint via 
ecological niche filtering, with varying relative strengths. We 
can thus predict that (P1) if dispersal limitation is the domi-
nant driver, the rate of spatial turnover of biological commu-
nities will be the same at both haplotype and species levels. 
In contrast, (P2) if environmental constraint is the dominant 
driver, community turnover at the species and haplotype 
levels are expected to differ, because species ranges would be 
constrained by the limits of their ecological niche, whereas 
neutral haplotype ranges do not experience such a constraint. 
In this second scenario, there is a point after which the spe-
cies would not be able to further expand the range while 
the haplotypes would continue to do so (within the limits 
of the species range), given that their ranges are subject to 
dispersal limitation alone (Fig. 1). In fact, these predictions 
do not need to be restricted to the dichotomy between hap-
lotype and species levels, since they are just the lower and 
upper limits of multiple scales in the genealogy of a spe-
cies. Genealogical scales can be viewed as slices of increasing 
depth in a coalescent tree, from the most recent (haplotypes, 
or unique genetic variants), to intermediate (intraspecific 
lineages composed of several related haplotypes), and to the 
deepest scale (species). Therefore, assessing how community 
turnover varies across different genealogical scales is analo-
gous to assessing how macroecological patterns vary across 
phylogenetic scales (Graham et al. 2018), but phylogenetic 
scales are nodes above the species level in a phylogenetic tree, 
while genealogical scales are nodes below the species level in 
a coalescent tree.

In this study, we provide a predictive framework to quan-
tify the signatures of dispersal and environmental constraints 
based on the relationship between community similarity 
and spatial distance (i.e. distance–decay) across genealogi-
cal scales. Distance–decay models allow the quantification of 
community turnover in two parameters, 1) the slope of the 
decay function, which measures the rate at which community 
similarity decreases with spatial distance, and 2) the inter-
cept with the y-axis, which measures the initial community 
similarity (Soininen  et  al. 2007). These parameters can be 
compared across regions (Qian et al. 2005, Fitzpatrick et al. 
2013, König et al. 2017), biological groups (Soininen et al. 
2007, Saito  et  al. 2015, Gómez-Rodríguez and Baselga 
2018) and genealogical scales (Baselga et al. 2013, Gómez-
Rodríguez et al. 2019, Arribas et al. 2020). Previous studies 
reported a striking regularity of distance–decay of community 
similarity across genealogical scales in various groups of inver-
tebrates (Baselga et al. 2013, 2015, Gómez-Rodríguez et al. 
2019). In these studies, 1) community similarity at short dis-
tances (intercept) regularly increases with genealogical scale, 
which we will refer to as genealogical scaling of similarity, and 
2) community similarity decays with spatial distance at the 
same rate (slope) at all genealogical scales, which we will refer 
to as genealogical invariance of turnover rate. Genealogical 
invariance of turnover rate is only expected if the expansion 
of the spatial ranges of haplotypes, lineages and species occurs 
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at the same pace at all genealogical scales (our prediction P1, 
Fig. 1a). Under P1, the range size of lineages and thus com-
munity turnover depend on genealogical scale, also leading 
to the genealogical scaling of initial similarity. In contrast, 
according to our prediction P2, distance–decay rates vary 
across genealogical scales (genealogical scale-dependence) when 
the environment controls the species distributions (Fig. 1b). 
As a consequence, when the environmental conditions (e.g. 
climate) constrain species ranges, community similarity is 
predicted to decay at different rates across genealogical scales.

Our predictive framework is built upon probabilistic mod-
els that simulate the spatial distribution of lineages at multiple 
genealogical scales (from haplotypes to species) under differ-
ent strengths of dispersal and environmental constraint. For 
each parameterization of the model, i.e. the specific combina-
tions of dispersal and environmental constraints, we obtain a 
simulated community in which to measure how community 
similarity decayed with spatial distance at multiple genealogi-
cal scales. Our model thus makes specific predictions of how 
the shape of the distance–decay curves remains constant or 
varies across genealogical scales under different combinations 
of environmental constraint and dispersal limitation. Finally, 
we used our predictive framework to evaluate the strength 
of dispersal and environmental constraints in 16 empirical 

systems. Using DNA sequence data for entire local com-
munities sampled along regional transects, we assessed how 
distance–decay of similarity varied across genealogical scales 
across these empirical communities. The observed patterns 
were compared against those predicted by the simulation 
model, implementing an approximate Bayesian computation 
framework (ABC, Beaumont 2010), to assess the relative rel-
evance of dispersal limitation and environmental constraint 
in the spatial turnover of real-world communities.

Material and methods

Approximate Bayesian computation

We used an approximate Bayesian computation (ABC) 
framework (Beaumont 2010) to study how dispersal limita-
tion and environmental constraint determine the geometry 
of spatial ranges of haplotypes while accounting for their 
genealogical relationships. ABC is a statistical approach that 
uses computer simulations to estimate the posterior distribu-
tion of model parameters without the need for an explicit 
likelihood function. To be effective, it requires a realistic 
simulation model and a set of summary statistics that capture 

Figure 1. Schematic representation of how distance–decay curves at multiple genealogical scales account for the geometry of lower-level 
lineage ranges (i.e. haplotype ranges) within higher-level lineage ranges (i.e. species). Note that community similarity measures the propor-
tion of species ranges (or lineage ranges) that overlap between two sites. Only one species and three genealogical scales (1: haplotypes, 2: 
intraspecific lineages, 3: species) are represented for simplicity. (a) If the species ranges (yellow) are only constrained by dispersal limitation, 
lineage ranges of all ages (1, 2 and 3, including species) expand their ranges at the same rate as a function of time. Therefore, similarity 
decays with spatial distance at the same rate at all genealogical scales and the intercepts of the curves shift regularly from level to level. (b) 
However, if the environment constrains the species range, range expansion will reach a limit at the species level while it will continue 
expanding in lineages below the species level. Consequently, community similarity decays at different rates at different genealogical scales 
and intercepts do not shift regularly from level to level.
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the most relevant information present in the data. In short, 
we simulated the expansion of haplotypes, intraspecific lin-
eages and species as a function of dispersal ability (tau) and 
ecological niche width (nsd), see details below. For each com-
bination of dispersal ability and niche width, we computed 
the summary statistics that characterise the distance–decay 
curves and their variation across genealogical scales, and used 
the distribution of these summary statistics to infer the dis-
persal ability and the ecological niche width in 16 empirical 
datasets, using the rejection algorithm implemented in the R 
package 'abc' (Csilléry et al. 2012). The rejection algorithm 
compares the observed summary statistics to the simulated 
summary statistics, and when the difference is sufficiently 
small, the dispersal ability and niche width values used in 
that specific simulation are accepted as samples of the pos-
terior distribution of dispersal ability and niche width in the 
empirical dataset. On the contrary, simulations with sum-
mary statistics too far from the observed values are left out of 
the samples used to estimate the dispersal ability and niche 
width of the empirical dataset.

Simulation model
In our model, lineage evolution takes place on an environmen-
tal landscape consisting of a 300 × 300-cell grid characterised 
by two climatic variables, temperature and precipitation. We 
defined three main climatic gradients: linear (characteriz-
ing latitudinal gradients with tight correlation between cli-
mate and geographic distance), bidirectional (as produced 
by a mountain ridge dissecting a landscape) and concentric 
(around a landscape feature such as a singular mountain sum-
mit). Temperature and precipitation are mostly independent 
in the linear climatic gradient (temperature covarying with 
latitude and precipitation with longitude) but are highly cor-
related in the bidirectional and concentric climatic gradients.

On top of the virtual landscape, we simulated random 
coalescent haplotype genealogies for each species with the 
function rcoal() of the R package 'ape' (Paradis et al. 2004). 
Tree height (i.e. the distance between the root and the tips 
of the coalescent tree) is set to a number of arbitrary time 
units. The spatial range of species and haplotypes is simu-
lated allowing lineages to spread as follows (see animation 
in the Supporting information). The ancestral haplotype of 
each species is placed at random in one of the central 200 
× 200 cells of the landscape. For each species, the ancestral 
haplotype is allowed to expand its spatial range n times; n 
being the number of time units between its origin and the 
first node in the genealogy. Because genealogies are indepen-
dently simulated for each species, n varies in each case. At 
the first node, a new haplotype is generated and assigned to 
a random location within the spatial range of the ancestral 
haplotype. Again, both haplotypes (ancestral and new) are 
allowed to expand their ranges a number of times until reach-
ing the next node in the tree, when new haplotypes are again 
added to the spatial grid in the same manner, until the tips of 
the tree are reached.

At each step, the spatial expansion of the range of the hap-
lotypes (and therefore of the species range) is probabilistic 

and takes place as follows. The probability of expanding to 
a new location in the landscape is modelled as a negative 
exponential function with mean tau. Thus, the probability 
of reaching a particular location decays exponentially with 
the distance to the occupied cells, and the slope of the decay 
depends on tau. The species ecological niche is modelled as 
a normal distribution with mean at the species optimum 
(defined as the climatic conditions in the species’ initial loca-
tion) and width defined by a single parameter, nsd. Hence, 
the probability of a species expanding to a given location 
depends on the species ecological niche width and on the 
climatic difference between the target location and the spe-
cies optimum. Lineage extinction was not considered because 
the simulation aims to mimic the spread of spatial ranges of 
the tips and lineages of a coalescent tree. At the end of each 
simulation, cell locations are collapsed into regional squares 
(by combining 10 × 10 local cells), in which the presence/
absence of each haplotype, intraspecific lineage and species is 
recorded. The simulated biological communities are thus the 
set of lineages present in any given regional square.

Simulation parameterization
We simulated genealogies for 20 species, each one with 
10–20 sampled haplotypes. In all cases, we set tree height 
to 100 arbitrary time units. For each of the three climatic 
gradients (linear, bidirectional and concentric), we explored 
combinations of seven niche widths (from very narrow to 
unlimited) and seven dispersal rates (from very low to unlim-
ited), resulting in a total of 48 scenarios per climatic setting 
(after ignoring the combination of unlimited niche and 
unlimited dispersal, which leads to a trivial uniform commu-
nity in which all haplotypes, lineages and species are present 
everywhere). Each of these scenarios (144 combinations of  
tau × nsd × climatic gradient) was replicated 1000 times, 
resulting in 144 000 simulations.

ABC summary statistics
For each simulation, we calculated the pairwise community 
similarity between regional squares using Simpson’s similar-
ity (Simpson 1943), an index independent of richness dif-
ferences (Baselga 2010), at five genealogical scales, using 
the presence/absence in each square of: 1) haplotypes (tips 
in the coalescent tree), 2) intraspecific lineages delimited at 
25 time units, 3) intraspecific lineages delimited at 50 time 
units, 4) intraspecific lineages delimited at 75 time units and 
5) species. For each of these five genealogical scales, we fitted 
a negative exponential function describing the decay of com-
munity similarity with spatial distance, as y = a × e−bx, where 
y is similarity at distance x, a initial similarity and b the rate of 
distance–decay (Gómez-Rodríguez and Baselga 2018). The 
spatial (Euclidean) distance between regional squares was 
computed from their spatial coordinates in the virtual land-
scape. Similarity matrices and distance–decay models (esti-
mating the a and b parameters from the simulated data) were 
computed using the R package 'betapart' (Baselga and Orme 
2012, Baselga  et  al. 2020). From these five distance–decay 
curves, we computed two summary statistics measuring 
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how distance–decay patterns vary across genealogical scales 
(Baselga et al. 2013). The first summary statistic was the log–
log correlation between a and genealogical level (ra), which 
measures how regularly similarity shifts across genealogical 
scales (with low values of ra indicating genealogical scale-
dependence, and high values indicating genealogical scaling 
of initial similarity). The second summary statistic was the 
coefficient of variation of b across genealogical scales (cvb), 
which quantifies how different the decay rates are across 
genealogical scales (with low values of cvb indicating genea-
logical invariance in decay rate). These two summary statis-
tics account for the variance in distance–decay patterns across 
genealogical scales (Fig. 1). Additionally, we computed the 
average r2 of decay curves across all genealogical scales, mean.
r2, which accounts for the goodness of fit in the relationship 
between pairwise community similarity and spatial distance.

Power of the ABC framework
We assessed the ability of our ABC framework to estimate 
tau and nsd with an independent set of 14 400 simulations 
(144 combinations of tau × nsd × climatic gradient that were 
replicated 100 times), under a rejection tolerance of 0.01 (i.e. 
only the 1% of simulations with closest summary statistics 
to the observed ones were used to estimate tau and nsd). We 
found that our ABC method was able to estimate tau and nsd 
with acceptable accuracy (Supporting information).

Analysis of empirical datasets

We implemented our ABC framework to infer the relative 
importance of dispersal and environmental constraints across 
16 publicly available datasets that consisted of fully sequenced 
(mitochondrial cox1-5′ or cox1-3′) biological communities in 
multiple sites (mean number of sites = 11, SD = 6). The cri-
teria to select those datasets were a minimum number of sites 
(5), and a large number of sequences per site (minimum aver-
age number of sequences per site > 50). Mitochondrial cox1-
5′ or cox1-3′ fragments were selected as these are putatively 
neutral markers (Avise 1994), so the haplotype ranges should 
not be controlled by environmental constraint. Datasets 
encompassed different biological groups (mostly insects), 
world regions and geographical extents: leaf beetles of the 
Iberian Peninsula (Baselga et al. 2015), water beetles of Europe 
(Baselga et al. 2013), water beetles of Australia (Hendrich et al. 
2010), water beetles of Madagascar (Isambert  et  al. 2011), 
darkling beetles of the Aegean Islands (Papadopoulou et al. 
2011), dung beetles of Costa Rica (García-López  et  al. 
2013), bats of South East Asia (Francis et al. 2010), bats of 
Guyana (Clare et al. 2011), terrestrial molluscs of the Iberian 
Peninsula (Gómez-Rodríguez  et  al. 2019), dragonflies of 
New Brunswick (Curry  et  al. 2012), caddisflies of New 
Brunswick (Curry  et  al. 2012), caddisflies of Pennsylvania 
(Bringloe 2013), ants of Mauritius (Smith and Fisher 2009), 
butterflies of Romania (Dincă et al. 2011), nymphalid but-
terflies of Yucatan (Prado et al. 2011) and lepidopterans from 
Papua (Craft et al. 2010). Sequences were available in public 
repositories (BOLD database and GenBank, see accession 

numbers and references in the Supporting information), and 
geographical coordinates were obtained from the original 
sources or kindly provided by the authors. When sites were 
not explicitly defined in the original sources, we grouped the 
individual data-points into a discrete number of sites using a 
cluster analysis (Ward algorithm) on the geographical coor-
dinates of individual sequences. The spatial extent of datasets 
varied between 40 and 4000 km (mean = 1043, SD = 1331).

For each dataset, we delimited lineages and putative spe-
cies using haplotype networks built with the TCS software 
(Clement  et  al. 2000) and the nesting algorithm imple-
mented in ANeCA v.1.2 (Panchal 2007). This algorithm 
creates a nested design (Templeton  et  al. 1992) by hierar-
chically clustering haplotypes into entities corresponding to 
intermediate lineages defined by n mutational steps between 
haplotypes (n-step networks). We then fitted distance–decay 
curves at all genealogical scales using negative exponential 
models and computed the same summary statistics ra, and 
cvb, as in the simulations. We also computed the average 
coefficient of determination of decay curves, mean.r2. To esti-
mate dispersal ability (tau) and ecological niche width (nsd) 
in each empirical dataset, and thus the relative importance 
of dispersal versus environmental constraints, we evaluated 
the observed summary statistics against the distribution of 
summary statistics across simulated communities considering 
variation of tau and nsd parameters (ABC framework). To do 
this, we first classified each of the empirical datasets into one 
of three climatic gradients (linear, bidirectional or concen-
tric) based on the observed maps of mean annual tempera-
ture and annual precipitation (Supporting information) and 
used the simulations from the corresponding climate setting 
with the ABC framework for each specific empirical dataset. 
The values of tau and nsd estimated for each empirical data-
set can be interpreted in relative terms. Low values indicate 
strong dispersal limitation and narrow niches, respectively, 
and high values indicate unlimited dispersal and wide niches, 
respectively.

Results

Our simulations revealed how the decay of community 
similarity at different genealogical scales changes under 
varying strengths of dispersal limitation and environmental 
constraint (Fig. 2). The proportion of variance explained 
by negative exponential models was relatively high (mean 
pseudo-r2 across genealogical scales > 0.5) under most 
simulations in the linear climatic gradient, except when 
both dispersal limitation and environmental constraint 
were loose, but only under tight dispersal limitation in the 
bidirectional and concentric climatic gradients (Supporting 
information). Only simulations involving tight dispersal 
limitation and no or very loose environmental constraint 
produced patterns of distance–decay in community turn-
over characterised by genealogically invariant distance–decay 
slopes and initial similarity regularly scaling from the spe-
cies to the haplotype scale (Fig. 2a, e, i). In contrast, when 
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environmental constraint was strong, distance–decay of simi-
larity showed genealogical scale-dependence (Fig. 2b–d, f–h, 
j–l). Genealogical scale-dependence was particularly marked 
when climatic conditions changed rapidly over short dis-
tances (e.g. mimicking altitudinal gradients) (Fig. 2g–h, k–l). 
In these cases, at the shortest spatial distance, communities 
may even be more similar at the haplotype level than at the 
species level (Fig. 2k). This occurs because the proportion of 
haplotypes (which are more numerous than species) shared 
between two locations becomes high if haplotypes disperse 
widely within the species ranges (which only occupy a small 
spatial range due to environmental constraint). Altogether, 
among all the combinations of different strengths of dispersal 
limitation and environmental constraint, only when dispersal 
ability was tightly limited and under lack of (or loose) envi-
ronmental constraint, our simulations resulted in distance–
decay curves invariant across genealogical scales (Fig. 3). In 
turn, distance–decay curves were different across genealogical 
scales when environmental constraint is effective at limiting 
species ranges.

When these simulations were used as a benchmark to infer 
the processes driving empirical patterns, the ABC analyses 

estimated low values of dispersal ability (tau) and high values 
of niche width (nsd) in 11 datasets (Table 1), suggesting the 
predominance of dispersal limitation in these biological sys-
tems. These datasets showed regular genealogical scaling of 
initial similarity and genealogically invariant distance–decay 
slopes (Fig. 4a–e, g–l), and in seven of these datasets (leaf 
beetles of the Iberian Peninsula, water beetles of Europe, 
Australia and Madagascar, darkling beetles of the Aegean 
Islands, bats of South East Asia, terrestrial molluscs of the 
Iberian Peninsula and caddisflies of New Brunswick) the coef-
ficient of determination was relatively high (mean.r2 > 0.36). 
However, in four of them (water beetles of Madagascar, bats 
of Guyana, dragonflies of New Brunswick and caddisflies of 
Pennsylvania) this coefficient was lower (mean.r2 < 0.15), 
suggesting some uncertainty in these four datasets. Finally, 
the ABC analysis estimated low values of ecological niche 
width in the five remaining datasets, pointing to a preponder-
ance of environmental constraint. These datasets exhibited 
a marked genealogical scale-dependence in distance–decay 
curves (Fig. 4g, m–p): the dung beetles of Costa Rica, butter-
flies of Romania, nymphalid butterflies of Yucatan, lepidop-
terans from Papua, and ants of Mauritius (Table 1).

Figure 2. Simulated distance–decay patterns at multiple genealogical scales from haplotypes (blue) to species (yellow) for representative 
combinations of dispersal limitation (tau), niche width (nsd) and climate setting (linear, bidirectional or concentric gradient). The three 
major columns represent the three simulated climatic settings (heat maps): linear gradient (left column, a–d), bidirectional gradient (central 
column, e–h) and concentric gradient (right column, i–l), and the rows represent different combinations of dispersal limitation and envi-
ronmental constraint, from pure dispersal limitation (a, e, i) to pure environmental constraint (d, h, l). For each scenario, two plots are 
included: predicted distance–decay patterns at multiple genealogical scales (subscript = 1), and log–log relationship between initial similar-
ity (intercept) and genealogical scale (subscript = 2). In both columns, colours represent the genealogical scales from haplotypes (blue) to 
species (yellow). Genealogical invariance of distance–decay curves (a, e, i) is characterized by similar slopes at all scales and a regular shift in 
the intercepts from level to level. Unlimited dispersal ability or niche width is marked as infinite (inf ).
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Finally, to analyse how spatial scale determines the rela-
tive importance of dispersal and environmental constraints, 
we assessed the spatial scale at which genealogical invariance 
in distance–decay was detected across the empirical systems. 
The spatial scale of analysis ranged from a few tens of kilome-
tres in the ants of Mauritius to several thousand kilometres 

in European and Australian water beetles (Supporting infor-
mation). In the datasets dominated by dispersal limitation, 
the rate at which similarity decayed with distance showed a 
logarithmic relationship with the spatial scale of the dataset 
(Fig. 5, r2 = 0.79, F1,5 = 19.36, p = 0.007). The remaining 
datasets (i.e. those affected by environmental constraint) fell 

Figure 3. Interpolated parameter space of two summary statistics under different values of dispersal ability, niche width and three climatic 
settings. Columns show the log–log correlation between distance–decay intercepts and genealogical scale (ra), and the coefficient of varia-
tion of distance–decay slopes (cvb). Colour represents the average statistic across 1000 simulations, which was interpolated across the whole 
range of dispersal and niche width combinations. The white line depicts the region defined by ra > 0.975, and cvb < 0.2 (genealogical scaling 
of intercepts and genealogical invariance of distance–decay slopes).
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in a narrow area above this logarithmic function, showing 
flatter slopes of the decay curves. For example, the water bee-
tles of Madagascar showed a slope in distance–decay curves 
like those of the water beetles of Europe and Australia, sug-
gesting that they have a similar dispersal ability. However, at 
this relative small spatial scale (Madagascar), the water beetle 
dispersal ability is sufficient to make their spatial range being 
environmentally constrained, while European and Australian 
water beetle communities are dispersal limited because of the 
relatively larger spatial scales of these datasets. A similar out-
come was observed for the bat communities of SE Asia (dis-
persal limited) and Guyana (environmentally constrained).

Discussion

Our framework predicts how varying strengths of environ-
mental and dispersal constraints modify the relationship 
between community similarity and spatial distance at mul-
tiple genealogical scales (haplotypes, intraspecific lineages 
and species). Spatial turnover is expected to shift regularly 
across genealogical scales (i.e. genealogical scaling of initial 
similarity) and to decay with spatial distance at the same rate 
across genealogical scales (i.e. genealogical invariance of dis-
tance–decay slopes), when the process is driven exclusively 
by dispersal. On the contrary, the regularity is disrupted if 
the environment constraints the distributional dynamics of 
species (but not the distributions at lower genealogical scales, 
haplotypes and intraspecific lineages). We have used simula-
tions in which the expansion of haplotype and species ranges 
is driven by varying combinations of dispersal and environ-
mental constraints. In the simulated biological communities, 
the relative contributions of dispersal versus environmental 
constraints in controlling community turnover are known. 
Therefore, the joint analysis of distance–decay patterns at 
multiple genealogical scales in these simulated communities 

produces unequivocal predictions of how varying combina-
tions of dispersal and environmental constraints impact the 
variance in distance–decay patterns across genealogical scales 
(measured with two summary statistics). Finally, an approxi-
mate Bayesian framework (ABC) allows estimating the 
relative relevance of dispersal limitation and environmental 
constraint in any empirical biological systems, by comparing 
the summary statistics from empirical datasets against those 
from the full spectrum of simulations. Because these simula-
tions represent general scenarios with simple climatic struc-
tures and simple rules for range expansion, they can be used 
as a general benchmark in future studies aiming to estimate 
the relative roles of dispersal limitation and niche constraint. 
They might also be used as a basis to build more specifically 
tuned simulations, with particular climatic settings, dis-
persal abilities or environmental constraints across species  
and regions.

Our simulations show that the genealogical invariance 
of distance–decay rates and the genealogical scaling of ini-
tial similarity is only expected when dispersal is the main 
driver of range dynamics. In such scenario, the rate of decay 
in community similarity with spatial distance only depends 
on the organisms’ ability to expand their ranges. Hence the 
slope of distance–decay curves can be considered as a proxy 
for the dispersal ability of each biological group (Qian 2009, 
Wetzel et al. 2012, Saito et al. 2015, Chust et al. 2016, Gómez-
Rodríguez and Baselga 2018). This direct link between dis-
persal ability and the slope of distance–decay curves allows 
two additional inferences. First, dispersal limitation will be 
effective at different spatial scales depending on the intrinsic 
dispersal ability of organisms. Evidently, dispersal limitation 
will be relevant at small spatial scales only in organisms with 
the poorest dispersal abilities while, at large spatial scales, 
dispersal limitation may also play a role in structuring the 
diversity patterns of organisms with better dispersal abili-
ties. This implies that, for any given dispersal ability, there 

Table 1. Summary statistics for the 16 empirical datasets and estimated dispersal ability (tau) and niche width (nsd) with ABC. For each 
dataset, the observed summary statistics ra and cvb were evaluated against the summary statistics derived from the simulations under the 
corresponding climate setting observed in the empirical dataset (Supporting information). The median and 0.1–0.9 quantiles (in brackets) of 
the posterior distributions of the estimated tau and nsd parameters are shown in the right columns.

Dataset Climate ra cvb mean.r2 tau nsd

Leaf beetles-Spain Linear 0.99 0.17 0.73 0.5 (0.5–0.8) 7.39 (2.7–12.2)
Water beetles-Europe Linear 0.99 0.18 0.39 0.5 (0.5–0.8) 7.39 (2.7–12.2)
Water beetles-Australia Linear 0.99 0.09 0.52 0.5 (0.5–0.8) 4.48 (1.7–12.2)
Water beetles-Madagascar Concentrical 0.97 0.26 0.14 0.5 (0.5–3.7) 4.48 (1.6–7.4)
Darkling beetles-Aegean Islands Linear 0.99 0.18 0.42 0.5 (0.5–0.8) 7.39 (2.7–12.2)
Dung beetles-Costa Rica Bidirectional 0.98 0.19 0.17 20 (20–20) 1.65 (1.0–4.5)
Bats-SE Asia Linear 0.99 0.14 0.86 0.5 (0.5–0.8) 4.48 (1.7–12.2)
Bats-Guyana Concentrical 0.99 0.51 0.1 0.5 (0.5–0.5) 7.39 (4.5–20)
Molluscs-Spain Linear 0.99 0.07 0.37 0.5 (0.5–0.8) 7.39 (2.7–12.2)
Dragonflies-New Brunswick Linear 0.98 0.25 0.07 0.5 (0.5–0.8) 4.48 (1.7–7.4)
Caddisflies-New Brunswick Linear 0.99 0.15 0.47 0.5 (0.5–0.8) 4.48 (1.7–12.2)
Caddisflies-S. Pennsylvania Linear 0.98 0.63 0.11 0.5 (0.5–0.8) 4.48 (1–7.4)
Ants-Mauritius Concentrical 0.31 0.31 0.11 1.359 (0.8–3.7) 1 (1–20)
Butterflies-Romania Bidirectional 0.97 0.53 0.12 20 (20–20) 2.72 (1–4.5)
Nymphalids-Yucatan Bidirectional 1.00 1.49 0.02 20 (20–20) 2.72 (1–4.5)
Lepidoptera-Papua Bidirectional 0.98 1.72 0.04 20 (20–20) 2.72 (1–4.5)



9

Figure 4. Observed distance–decay patterns at multiple genealogical scales from haplotypes to species for different taxonomic groups and 
geographic areas. For each empirical dataset, two plots are included: distance–decay patterns at multiple genealogical scales (plot with sub-
script = 1), and log–log relationship between initial similarity (intercept) and genealogical scale (subscript = 2). In both columns, colours 
represent the genealogical scales from lower (haplotypes, blue) to higher levels (putative species, yellow). The linear fit is shown when ra ≥ 
0.99. Pictures were downloaded from Wikimedia Commons and other sources under Creative Commons license (ant by Michael Bentley; 
bats by Christoph F. Robiller and Hasitha Tudugalle; beetles by Udo Schmidt; butterflies by Didier Descouens, Vítězslav and Maňák Robert 
Nash; caddisfly by CBG Photography Group, Centre for Biodiversity Genomics; dragonfly by William Haber; slug by Africa Gómez).
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exists a minimum spatial extent below which environmental 
constraint becomes an effective limit to expansion of spe-
cies ranges and, therefore, the distance–decay curves show 
genealogical scale-dependence. Below that minimum spatial 
extent, dispersal limitation would not effectively constraint 
species ranges and, instead, the environment may become the 
most relevant factor limiting species distributions. Second, 
in dispersal-limited systems, where range expansion at all 
genealogical scales is simply time-dependent, the relation-
ship between the lineages’ spatial range sizes and genealogical 
depth will depend on the dispersal ability of each biological 
group. Given that dispersal ability is accounted for by the 
slope of the distance–decay curves, the spatial and genealogi-
cal scales of community turnover become equivalent, i.e. they 
are different expressions of the same dispersal process over 
time and space.

Our predictive framework is built upon simulating a 
mechanistic process of range expansion of haplotypes while 
accounting for the genealogical relationships among them. 
We assume a macroecological model of lineage birth and 
range expansion, whereby lineage ranges gradually spread 
from their origin at a uniform rate, which causes similarity 
to decrease with distance at the same rate at all genealogical 
scales, unless ranges at the species level are under environmen-
tal constraint (see animation in the Supporting information). 
This simulation represents a simplified model of community 

formation that only considers lineage birth, age, lineage dis-
persal and species ecological niche, without considering local 
species interactions in the communities (García-Callejas et al. 
2019). We do not further explore species interactions or 
alternative ecological niche processes because we are focused 
on the environmental constraints affecting species assembly 
processes, which is most likely the dominating process across 
terrestrial biological systems (McGill 2010, Mendoza and 
Araújo 2019). As a further simplification, we do not con-
sider extinction, in line several studies of species ranges and 
lineage ages across macroecological settings (Barraclough and 
Vogler 2000). This model is powerful for the analysis of large-
scale patterns of ranges without the detail of individual-based 
models of neutral metacommunities and thus allows the anal-
ysis of thousands of entities (and can be applied at multiple 
genealogical scales).

Among the empirical datasets used, a large fraction (11 
of 16 cases) showed genealogical invariance in the distance–
decay curves although the variance explained by the distance–
decay curves was low in four cases. Therefore, the conservative 
estimate is that dispersal limitation is the dominant process 
in seven case studies. That is more than the cases for which a 
preponderance of environmental constraint was inferred. It is 
worth noting that these dispersal-limited biological systems 
include organisms with low mobility, like darkling beetles, 
leaf beetles, caddisflies and terrestrial molluscs, as well as 

Figure 5. Relationship between distance–decay slope (mean value across genealogical scales) of the distance–decay pattern and spatial extent 
(maximum distance between sites in each empirical dataset). Summary statistics are indicated by the circle filling shade (cvb, variability of 
slopes across genealogical scales, from low variability = light grey to high variability = dark grey) and circle size (mean.r2, fit of decay curves 
across scales), showing that datasets presenting a genealogical invariance of distance–decay patterns occupy a specific region in the space 
defined by dispersal rate (slope of decay) and geographical extent. The dashed line is the logarithmic relationship (r2 = 0.79, F1,5 = 19.36, 
p = 0.007) between slope and extent for those datasets in which genealogical invariance was observed (marked with pictures).
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highly mobile organisms like water beetles and bats sampled 
at very large, continental scales. In contrast, the systems where 
climatic constraints were found to be preponderant included 
organisms with high dispersal ability (dung beetle, lepidop-
terans and ants) that were analysed at relatively small spatial 
scales. For example, the ants of Mauritius Island showed a 
large variation in distance–decay slopes across genealogical 
scales and a complex pattern of increase–decrease–increase 
in the distance–decay intercepts from lower to higher gene-
alogical scales. Our ABC predictive framework shows that 
similar distance–decay curves and summary statistics (ra and 
cvb) are produced when simulating a strong environmental 
constraint and relatively low dispersal ability in a mountain 
climatic gradient (Fig. 2k). Likewise, the Papuan butterflies 
showed large variation in distance–decay slopes (most of 
them positive), low distance–decay intercept at the species 
level, and very poor fit of exponential decay models at all 
genealogical scales. Our ABC predictive framework shows 
that similar summary statistics were obtained in simulations 
under narrow environmental tolerance and extremely high 
dispersal ability in a mountain climatic gradient (Fig. 2h), a 
scenario fitting the proposed biological scenarios of butterfly 
communities in Papua (Craft et al. 2010). It should be noted 
that, as with any other method, the accuracy of our infer-
ences depends on the quality of the data. Sampling effort 
(number of sampled sites and number of sequenced speci-
mens) differed across empirical datasets, so the robustness of 
the inference might also vary.

In conclusion, the proposed predictive framework intro-
duces two major features that, taken together, can help 
improve our ability to discern the underlying causal factors 
for the spatial turnover among biological communities. First, 
by directly manipulating the haplotype and species range 
expansion, we can produce specific predictions of how com-
munity turnover will remain scale-invariant or vary across 
genealogical scales depending on the relative strengths of dis-
persal limitation and niche constraint. Second, these predic-
tions can be used to estimate the relative strength of dispersal 
limitation and environmental constraint in real biological 
communities. Whether dispersal limitation or environmental 
constraint control the distribution of biological diversity at 
varying spatial scales is crucial for understanding and predict-
ing global change effects on the composition and functioning 
of biological communities (Dornelas et al. 2014). Our results 
are consistent with the view that biodiversity models should 
take into account the taxon-specific traits affecting dispersal 
limitation and environmental constraint. Such traits would 
include body size, flight ability, degree of ecological specialisa-
tion, trophic preferences and others, in line with the observed 
relationship between the strength of the latitudinal richness 
gradient and body mass (Weiser  et  al. 2018). Importantly, 
we demonstrate that assessing biodiversity patterns at mul-
tiple genealogical scales allows estimating the relative impor-
tance of dispersal and environmentally driven processes as 
constraints of community turnover. Further research should 
focus on gathering empirical evidence on whether dispersal 
limitation or environmental constraint become critical range 

determinants for a wider spectrum of biological groups and 
geographical regions.
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