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Do community-level models describe
community variation effectively?

Andrés Baselga1,2* and Miguel B. Araújo1,3,4

INTRODUCTION

Community-level modelling combines distributions from

several species to produce synthetic representations of the

‘spatial pattern in the distribution of biodiversity at a

collective community level’ (Ferrier & Guisan, 2006). Three

community-level modelling approaches have been proposed

as alternatives to the familiar individual species distribution
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Marzoa s/n, 15782 Santiago de Compostela,

Spain, 3Laboratorio Internacional de Cambio

Global, UC-CSIC, Departamento de Ecologı́a,

Facultad de Ciencias Biológicas, PUC,

Alameda 340, PC 6513677, Santiago, Chile,
4Rui Nabeiro Biodiversity Chair, CIBIO,
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ABSTRACT

Aim The aim of community-level modelling is to improve the performance of

species distributional models by taking patterns of co-occurrence among species

into account. Here, we test this expectation by examining how well three

community-level modelling strategies (‘assemble first, predict later’, ‘predict first,

assemble later’, and ‘assemble and predict together’) spatially project the observed

composition of species assemblages.

Location Europe.

Methods Variation in the composition of European tree assemblages and its

spatial and environmental correlates were examined with cluster analysis and

constrained analysis of principal coordinates. Results were used to benchmark

spatial projections from three community-based strategies: (1) assemble first,

predict later (cluster analysis first, then generalized linear models, GLMs); (2)

predict first, assemble later (GLMs first, then cluster analysis); and (3) assemble

and predict together (constrained quadratic ordination).

Results None of the community-level modelling strategies was able to accurately

model the observed distribution of tree assemblages in Europe. Uncertainty was

particularly high in southern Europe, where modelled assemblages were markedly

different from observed ones. Assembling first and predicting later led to

distribution models with the simultaneous occurrence of several types of

assemblages in southern Europe that do not co-occur, and the remaining

strategies yielded models with the presence of non-analogue assemblages that

presently do not exist and that are much more strongly correlated with

environmental gradients than with the real assemblages.

Main conclusions Community-level models were unable to characterize the

distribution of European tree assemblages effectively. Models accounting for

co-occurrence patterns along environmental gradients did not outperform

methods that assume individual responses of species to climate. Unrealistic

assemblages were generated because of the models’ inability to capture

fundamental processes causing patterns of covariation among species. The

usefulness of these forms of community-based models thus remains uncertain

and further research is required to demonstrate their utility.

Keywords

Bioclimatic envelope models, biotic interactions, community-level modelling,

ecological niches, Europe, species distribution modelling, trees.

Journal of Biogeography (J. Biogeogr.) (2010) 37, 1842–1850

1842 www.blackwellpublishing.com/jbi ª 2010 Blackwell Publishing Ltd
doi:10.1111/j.1365-2699.2010.02341.x



models (Ferrier & Guisan, 2006). (1) ‘Assemble first, predict

later’ is an approach whereby species distributions are first

combined with classification or ordination methods and the

resulting assemblages are then modelled using machine-

learning or regression-based approaches. (2) ‘Predict first,

assemble later’ is an approach whereby individual species

distributions are modelled first and the resulting potential

species distributions are then combined (i.e. the result is in

fact the summation of individualistic models). (3) ‘Assemble

and predict together’ is an approach whereby species

distribution models are fitted using both environmental

predictors and information on species co-occurrence. The

potential usefulness of community-level modelling has been

discussed by Ferrier et al. (2002) and Ferrier & Guisan

(2006) on theoretical grounds. The authors suggest that the

virtue of the ‘assemble first, predict later’ strategy is that it

enforces congruence of spatially projected and observed

assemblages, whereas the ‘predict first, assemble later’ and

the ‘assemble and predict together’ strategies are expected to

extrapolate beyond known assemblages. The authors also

clarify that the ‘predict first, assemble later’ strategy does not

consider patterns of species co-occurrence in the modelling

process, whereas the ‘assemble and predict together’ strategy

is the only one that allows individual species response curves

to environmental variables to be combined with inter-specific

covariation in species ranges (Ferrier & Guisan, 2006),

thereby providing ‘scope to address interactions between the

distributions of different species, such as those resulting from

competition or predation’.

Despite the suggestion that community-level modelling

strategies are useful in a number of model applications, few

studies have assessed the implications of the three proposed

approaches (Ferrier et al., 2002; Ferrier & Guisan, 2006). In

fact, the three approaches are not alternative modelling

strategies for the same problem. They are deeply rooted in

different concepts – the Clementsian and Gleasonian con-

cepts in community ecology – and therefore represent

different hypotheses on the mechanisms driving variation

in the composition of assemblages. The Clementsian concept

views communities as rigid combinations of co-occurring

species (Clements, 1916), and thus underlies the ‘assemble

first, predict later’ approach, in which the distribution of

assemblages is modelled as if the communities were stable

and fixed entities. In contrast, the ‘predict first, assemble

later’ approach can be interpreted as a formalization of the

Gleasonian concept, which views assemblages as the result of

collective individualistic responses of species to abiotic

factors (Gleason, 1939). Finally, the ‘assemble and predict

together’ strategy assumes the existence of interactions

between species, but it avoids the extreme Clementsian view

of communities being completely fixed and rigid entities

(Callaway, 1997).

There are many examples illustrating that species are often

sorted along environmental gradients in a seemingly

individualistic fashion, but interactions among species have

been shown to constrain these responses (e.g. Labandeira et al.,

2002; Koh et al., 2004; Travis et al., 2005; Araújo & Luoto,

2007; Thrush et al., 2008). The ‘assemble and predict together’

strategy may thus be seen as providing a tool to reconcile the

evidence of individual sorting of species along environmental

gradients with the evidence of the existence of interactions

among co-occurring species.

If the concepts underlying each of the alternative com-

munity-based models are different, should the outcomes of

the models be different? What exactly are they representing?

Are they effective tools with which to model community

dynamics at varying spatial scales? Surprisingly, empirical

tests assessing the merits of the three community-based

modelling strategies are scarce and the results are inconclu-

sive. For example, Ferrier et al. (2002) found no major

differences between the ‘assemble first, predict later’ and the

‘predict first, assemble later’ strategies. Olden et al. (2006)

found that a particular ‘assemble and predict together’

strategy (implemented with a multi-response artificial neural

network, MANN) outperformed the predictive capacity of

two alternative community-level modelling strategies (imple-

mented with logistic regression and multiple discriminant

analysis, respectively). However, because different methods

were used in this latter study (e.g. neural networks

versus logistic regression) it is difficult to know whether

differences between model outputs arose because differ-

ent algorithms were used or because of differences in the

conceptual underpinning of the models. Ideally, if the

goal is to assess the conceptual implications of alterna-

tive modelling strategies, the algorithms should be standard-

ized to ensure comparability. When such standardization

was carried out, the overall accuracy of community-

based strategies (i.e. ‘assemble and predict together’) was

reduced compared with that of familiar individualistic

models (‘predict first, assemble later’) (Baselga & Araújo,

2009).

Comparisons of community-based models with individual

species models can improve our understanding of the

strengths and weaknesses of each approach (Leathwick et al.,

2005; Elith et al., 2006; Olden et al., 2006; Chatfield, 2008;

Baselga & Araújo, 2009). However, appropriate tests for

benchmarking community-based models should ideally

examine how well they recover observed patterns of assem-

blage composition. Here, we start with the premise that it is

a reasonable expectation that models accounting for patterns

of co-occurrence along the environmental space should

interpolate patterns of compositional variation of assem-

blages better than individual species models do. To examine

this expectation, we use a well-known dataset on the

distribution of European trees. We begin by characterizing

the observed patterns of assemblage variation across geo-

graphical and environmental space. Then we model assem-

blage composition with the three modelling strategies

discussed above. Finally, correlates of species composition

in the observed assemblages are compared with the correlates

among projected assemblages with the three community-

based strategies.

Do community-level models describe community variation?
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MATERIALS AND METHODS

Biological data and environmental predictors

For this study, 158 native tree species and subspecies distrib-

uted across Europe were considered. This covers most of the

important timber taxa of Europe, including most gymnosperm

softwoods (Pinales and Taxales) and some hardwoods (Myr-

icales, Malpighiales, Rosales, Juglandales and Fagales)

(Humphries et al., 1999). Trees were chosen because: (1) their

distribution and ecology are relatively well known compared to

other plant taxa; (2) their richness is correlated (Spearman

correlation q = 0.80, P < 0.001) with the overall richness of

the Atlas Flora Europaeae (AFE) dataset (Araújo & Williams,

2000); and (3) they are long-lived organisms and their

distribution is relatively stable compared to some other

groups. Furthermore, they have been used as a test case for

studies of species distribution models for more than 10 years

(Araújo & Williams, 2000; Thuiller et al., 2003; Svenning &

Skov, 2005; Rickebusch et al., 2008; Baselga & Araújo, 2009).

The presence–absence data of species and subspecies constitute

a subset of Atlas Flora Europaeae (Jalas & Suominen, 1972–

1996), which was digitized by Lahti & Lampinen (1999). Data

are located in 4419 UTM (Universal Transverse Mercator)

50 · 50 km grid cells. We used only 2130 grid cells, excluding

most of the eastern European countries (except for the Baltic

States) because of low recording efforts in these areas

(Williams et al., 2000). Taxa occurring in fewer than 25 grid

cells were excluded from the analyses to avoid problems

associated with modelling species with small sample sizes

(Stockwell & Peterson, 2002): the reduced dataset comprised

119 taxa (see supplementary material in Baselga & Araújo,

2009), which are hereafter referred to as ‘species’ for simplicity.

For this study, we were limited to the use of two climatic

predictor variables (high-resolution climatic data for 10¢
quadrats; New et al., 2002) owing to the methodological

constraints of the community-based model used herein (for

details see Baselga & Araújo, 2009). For this reason, two

climatic variables, GDD (mean growing degree days, > 5 �C)

and Pann (mean annual precipitation sum, mm), were selected

from eleven predictor variables using PCA (principal compo-

nents analysis). The first two components accounted for 86%

of the variance. Examining the component loadings of the

environmental variables, we selected the two variables most

strongly correlated with first two PCA components: GDD

(Component 1 loading = )0.97) and Pann (Component 2

loading = 0.95). Therefore, GDD and Pann were used to fit the

models and to project species distributions (for details see

Baselga & Araújo, 2009).

Description of observed patterns of assemblage

variation

First, we characterized the patterns of variation in species

composition among European tree assemblages and investi-

gated how variation in species composition is correlated with

geographical and environmental factors. This characterization

of compositional variation of assemblages across geographical

space was then used as a benchmark against which to compare

patterns of assemblage variation as projected by the three

modelling strategies used. For each of the three approaches, we

analysed the variation in species composition of the modelled

assemblages using the same approach as for the observed

assemblages. The specific characteristics of the models and how

they were selected from similar alternative approaches are

explained below.

Variation in assemblage composition between all pairs of

cells was measured using Simpson’s index of dissimilarity

(bsim). This index was preferred to other alternatives because it

is independent of species richness gradients (Koleff et al., 2003;

Baselga, 2007). Simpson’s dissimilarities were computed in R

(R Development Core Team, 2006) using the function provided

by Baselga (2010). This dissimilarity matrix was then used to

aggregate data into clusters using the R cluster package

(Maechler et al., 2005). Clusters were built with the average

linkage method. In order to visualize the spatial patterns of

species composition, an arbitrary cut-off of 10 clusters was set

using the maptree package (White, 2007). The significance of

these 10 groups was assessed by means of analysis of similarity

(ANOSIM) tests (Clarke, 1993) using the vegan package

(Oksanen et al., 2007). Thereafter, the geographical distribu-

tion of the clusters was mapped using idrisi (Clark Labs, 2000).

This mapping allowed for a visual inspection of the geograph-

ical structure of European tree assemblages. The spatial and

environmental correlates of assemblage composition were then

assessed using constrained analyses of principal coordinates

(CAP) (Oksanen et al., 2007). This analysis allowed the

relationship between variability in the table of species occur-

rences and in the tables of the two sets of predictor variables

(environmental factors: GDD and Pann; and spatial position:

longitude and latitude) to be examined. CAP was selected

because it can be computed with any dissimilarity index and,

therefore, Simpson dissimilarity was preserved in the con-

strained ordination. Owing to the large size of our matrices and

the computational limitations of R, the significance of variables

could not be computed with the permutation tests (vegan

command permutest; Oksanen et al., 2007). For this reason, we

have not tested the inclusion of further variables, or polynomial

terms, in order to avoid the inclusion of non-significant terms

that could inflate the amount of explained variation. GDD,

Pann, longitude and latitude are likely to be good predictors of

variation in tree species composition, so the amount of

variation explained in our results should be considered

conservative, enabling the comparison of both sets of predictors

(environment and geographical position) with the same

number of variables. Finally, variation in species composition

was partitioned among environmental and geographical pre-

dictors, subtracting the variation explained by each set from the

variation explained by a complete model (Legendre & Legen-

dre, 1998), yielding estimates of fractions independently and

jointly explained by environment and spatial position (Borcard

et al., 1992).
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Selection of modelling procedures

There are several methods enabling the implementation of

each of the community-level model strategies investigated

herein. We used generalized linear models (GLMs) in

conjunction with clustering methodologies for the ‘predict

first, assemble later’, and for the ‘assemble first, predict later’

strategies. Constrained quadratic ordination (CQO) (Yee,

2004) was used for the ‘assemble and predict together’ strategy.

GLMs and CQO are analogous and therefore should provide

comparable results, except for the fact that the latter explicitly

accounts for the co-occurrence and co-exclusion of species

along environmental gradients. Therefore, straightforward

comparisons between GLMs and CQO methods are possible,

and differences are directly attributable to changes in patterns

of range overlap between species. For an extended discussion

of the two approaches, see Baselga & Araújo (2009).

Assemble first, predict later

The distributions of the 10 major clusters found in the

observed assemblages were modelled using GLMs with bino-

mial errors, logit link and quadratic functions. Response

variables were the occurrence of each one of the 10 cluster

classes, and predictor variables included GDD and Pann. No

variable selection was implemented, and quadratic and linear

terms of GDD and Pann were automatically included in models

for all clusters in order to allow full comparability with the

other strategies. The functions fitted using the complete dataset

were used to project the cluster distributions under the current

climate. Because each cluster (assemblage type) is considered a

rigid entity, several clusters can be predicted to be present in

the same cell. The projected presence of each one of the 10

clusters or several clusters together (up to 30 combinations in

our results), as well as the number of clusters predicted to be

present in each cell were mapped using idrisi (Clark Labs,

2000). This allowed visual comparison of the observed and

projected geographical distribution of European tree assem-

blages. Because the ‘assemble first, predict later’ strategy does

not preserve the identities of species projected for each cell,

no further analysis of the geographical and environmental

structure of the assemblages could be conducted.

Predict first, assemble later

Species distributions were modelled using GLMs with bino-

mial errors, logit link and quadratic functions. Response

variables were species occurrence records, and predictor

variables included GDD and Pann (for further details see

‘individualistic models’ in Baselga & Araújo, 2009). The

functions fitted using the complete dataset were used to

interpolate the species distributions under the current climate.

We built a table of predicted presences by cells that was subject

to the same analyses as the observed assemblages. Differences

between this strategy and the observed patterns, and those

derived from other strategies, were assessed by means of two

analyses. First, we measured the correlation between dissim-

ilarity matrices (Mantel tests conducted in R with the package

vegan; Oksanen et al., 2007). Second, we compared the

fractions of variation in species composition explained by

environmental and spatial factors in the CAP analyses.

Assemble and predict together

A rank-2 CQO (two latent variables) was fitted to the

occurrence of the 119 species, using binomial errors, logit

link, and GDD and Pann as predictor variables (for more details

see R script in Baselga & Araújo, 2009). As with GLMs, the

functions fitted with CQO were used to interpolate species

distributions under the current climate, and a table of the

predicted species compositions was built. This table was

subject to all analyses applied to the observed communities

and the communities predicted by GLMs, as explained above.

RESULTS

Compositional variation in the observed assemblages

The 10 biogeographical clusters summarizing different groups

of tree species were significantly different from each other

(ANOSIM R = 0.77, P < 0.01). The observed clusters (Fig. 1a)

match the widely recognized discontinuity between Mediter-

ranean and Eurosiberian biotas (Rivas-Martı́nez, 1990). Med-

iterranean tree assemblages were divided into several major

groups, corresponding to the three southern peninsulas, as well

as other more restricted clusters, whereas Eurosiberian tree

assemblages were much more uniform in composition and

were only further subdivided into a boreal and a temperate

cluster. The analysis of the environmental and spatial correlates

of the observed patterns of variation in species composition

showed that a complete model including both the environ-

mental (GDD and Pann) and spatial (longitude and latitude)

set of predictors explained only 26% of the variation in species

composition. Partitioning of the explained variation showed

that fractions exclusively explained by the environment (4%)

and geography (7%) were small compared with the fraction

explained by the collinear effects of both sets of variables

(16%).

Compositional variation from the ‘assemble first,

predict later’ strategy

The interpolation of the 10 observed clusters using the

function fitted by GLMs showed a clear lack of environmental

structure in Mediterranean assemblages (Fig. 1b). This is

evident from the high number of clusters that are predicted to

occur simultaneously in southern cells (Fig. 1c). Only boreal

and temperate Eurosiberian clusters are projected with relative

accuracy, whereas Mediterranean clusters are extrapolated to

regions where they are not actually present, generating up to 29

combinations of cluster occurrences. No further analyses could

be conducted owing to methodological constraints imposed by

Do community-level models describe community variation?
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this strategy, mainly derived from the loss of species identities

when they are assembled.

Compositional variation from the ‘predict first,

assemble later’ strategy

The cluster analysis of species composition interpolated by

GLMs showed clear differences from the observed pattern

of species composition of European trees (Fig. 1d). The

assemblages interpolated by GLMs were mostly structured in

latitudinal bands (i.e. the whole Mediterranean region was

predicted to harbour similar assemblages that were clustered

together). The 10 clusters projected by GLMs were even more

clearly structured than observed ones (ANOSIM R = 0.93,

P < 0.01). Mantel tests revealed a moderate correlation

between the observed dissimilarity matrix and that yielded

(a) (b)

(c)

(d) (e)

Figure 1 Distribution of 10 clusters summarizing the geographical structure of European tree assemblages. (a) Observed assemblages; (b)

projection yielded by the ‘assemble first, predict later’ strategy; (c) number of different clusters projected in the same cell by the ‘assemble

first, predict later’ strategy; (d) projection by the ‘predict first, assemble later’ strategy; and (e) projection by the ‘assemble and predict

together’ strategy.
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by GLMs (r = 0.67, P < 0.01). Considering assemblages pro-

jected by GLMs, the amount of variation in species compo-

sition explained by spatial and climatic factors was markedly

higher (59%). Partitioning of the variation in species compo-

sition interpolated by GLMs yielded a fraction exclusively

explained by environmental factors (17%) that was much

larger than that exclusively explained by spatial position (5%);

37% of this variation was explained by the collinear effect of

the two sets of variables.

Compositional variation from the ‘assemble and

predict together’ strategy

Results of the cluster analysis for species composition interpo-

lated with CQO (Fig. 1e) were very similar to those projected

with GLMs but different from the observed ones; assemblages

projected by CQO were mostly structured in latitudinal bands.

As for GLMs, the 10 clusters projected by CQO were more

clearly structured than the observed ones (ANOSIM R = 0.93,

P < 0.01). Mantel tests yielded moderate correlations between

the observed dissimilarity matrix and those interpolated by the

CQO model (r = 0.65, P < 0.01). In contrast, dissimilarity

matrices derived from assemblages interpolated by GLM and

CQO models were strongly correlated (r = 0.97, P < 0.01). For

the assemblages interpolated by CQO, the amount of variation

in species composition explained by spatial and environmental

factors was similar to that of GLM assemblages (57%).

Partitioning of the variation in species composition interpo-

lated by CQO models yielded purely environmental (18%),

spatial (4%) and shared (35%) fractions that were also similar

to those derived from the GLMs.

DISCUSSION

Previous studies have assessed whether community-based

approaches can improve projections of individual species

distributions (Leathwick et al., 2005; Elith et al., 2006; Olden

et al., 2006; Chatfield, 2008; Baselga & Araújo, 2009). Here, we

address a slightly different question. We ask whether commu-

nity-level models characterize community variation effectively.

The results show that the three community-level model

strategies tested herein yield patterns of assemblage composi-

tion that are markedly different from the observed ones. This

mismatch between modelled and observed assemblages is

interpreted as an indication that the models failed to capture

the underlying mechanisms generating co-occurrence (and co-

exclusion) of species distributions. Revealingly, community-

based models that take statistical patterns of co-occurrence

among species distributions into account did not reproduce

observed assemblages more closely than approaches that

simply combined the results of individualistic models. In fact,

both approaches yielded equally unrealistic patterns of assem-

blage variation.

The starting premise of this study was that models

accounting for patterns of co-occurrence among species

distributions were likely to characterize the observed compo-

sitional variation of assemblages more closely than individual

species models. The rationale was that models taking into

account the co-occurrence of species along environmental

gradients are more likely to reflect, at least partially, underlying

patterns of species interactions than models ignoring patterns

of co-occurrence among species. Of course, not all patterns of

co-occurrence or co-exclusion reflect functional interactions

between species (Araújo & Guisan, 2006). Patterns of

co-occurrence may also be caused by shared physiological

requirements. When this is the case, species may respond to

climatic factors in a similar fashion without necessarily

interacting. Likewise, co-exclusion among species can arise

because of species having different environmental require-

ments and thus occupying different parts of environmental

gradients. In other cases, species with similar environmental

requirements may have disjoint distributions because of

dispersal constraints. Regardless of whether biotic interactions

or biogeographical contingencies are responsible for generating

the patterns of co-occurrence in the data, it is expected that the

mechanisms generating them are somehow reflected in

the outputs of the ‘assemble and predict together’ and the

‘assemble first, predict later’ strategies. The degree to which

mechanisms generating co-occurrence and co-exclusion

among species distributions are reflected in the statistical

summaries of these two community-based models is unknown,

but it is reasonable to expect that they should convey more

information than the ‘predict first, assemble later’ approach,

which assumes unconstrained responses of species to environ-

mental gradients. However, the strong discrepancies between

the observed and modelled assemblages suggest that the

statistical signals associated with co-occurrence among Euro-

pean tree distributions are ineffectively characterized by

community-based models. In fact, the ‘predict first, assemble

later’ and ‘assemble and predict together’ strategies yielded

patterns of variation in species composition that were highly

correlated, supporting the view that the inclusion of species

co-occurrences along environmental gradients as input for the

models did not improve their ability to fit real patterns of

assemblage variation.

In addition to comparing observed and modelled assem-

blages, we analysed how spatial and environmental correlates

changed between them. Specifically, we treated observed

correlations as a reference with which to compare the

correlations obtained with the three community-level model

strategies. The correlation analysis showed that the observed

composition of assemblages of European trees is poorly

explained by geographical or environmental gradients. In

contrast, the patterns of interpolated assemblage variation with

any of the community-level models are strongly correlated

with climatic and geographical factors. The reason for such

differences is that, while observed assemblages may be weakly

correlated with climatic gradients, community-level models

force this correlation to be strong. In fact, models take into

account existing climate gradients and patterns of covariation

of species in climate space and interpolate ‘potential’ assem-

blages that may have no bearing on observed ones. The degree

Do community-level models describe community variation?
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of matching between observed and potential assemblages is

possibly related to the degree of equilibrium of individual

species distributions with the predictor variables used to fit the

models. Low equilibrium, that is, species being absent from

many climatically suitable areas, may arise for several reasons,

such as species dispersal limitation, inappropriate combina-

tions of biotic interactions, or unsuitable land use (Araújo &

Pearson, 2005).

Global analyses of equilibrium of species distributions and

climate are still lacking, but it is expected that areas with

marked historical signatures will harbour species with lower

degrees of equilibrium with climate (Araújo & Pearson, 2005).

When this is the case, community-level model strategies are

more likely to fail to describe community variation effectively.

Indeed, our results show that modelled assemblages in Europe

moderately match observed ones in northern regions, where

tree species have been shown to be at greater equilibrium with

climate (Svenning & Skov, 2004). In contrast, matching of

observed and modelled assemblages is reduced in southern

regions, where species have lower degrees of equilibrium with

climate (Svenning & Skov, 2004) (Fig. 1). A contrasting

performance of models in southern and northern Europe

possibly reflects the historical effects of glacial–interglacial

periods (Hewitt, 1999). Species that today occur at higher

latitudes are likely either to have persisted in ‘cryptic’ refugia

(Bhagwat & Willis, 2008) or to have dispersed northwards

from southern refugia (Taberlet et al., 1998; Hewitt, 1999),

thus showing improved ability to track climate changes and

reach equilibrium with the current climate. In contrast,

Mediterranean assemblages are the result of the long-term

persistence of isolated populations affected by dispersal

limitation, as suggested in the context of species distribution

modelling studies (Svenning & Skov, 2004) and supported

later by phylogeographic data (Petit et al., 2005). At the

assemblage level, in addition to the latitudinal richness

gradient (Svenning & Skov, 2007), the lower degree of

equilibrium of southern species with climate could be related

to the fact that the distribution of assemblages in southern

Europe is not structured in latitudinal bands following climatic

gradients. This distribution of assemblages leads to the low

amount of variation explained by climatic correlates, as

previously found by Svenning & Skov (2005), and for other

groups, such as reptiles and amphibians (Araújo et al., 2008),

and longhorn beetles (Baselga, 2008). The post-glacial recol-

onization process yields a wide-ranging uniform assemblage in

the Eurosiberian region, in which only two large temperate and

boreal regions are defined. As shown in several studies, wide-

ranging biogeographical units (resulting from wide-ranging

species) are more likely to be related to contemporary climatic

constraints than narrow-ranging units, which are more

commonly associated with historical factors (Jetz & Rahbek,

2002; Svenning & Skov, 2005; Araújo et al., 2008).

Mismatches between observed and potential assemblages

could be reduced if spatial predictors were added to commu-

nity-level models. The same is true for individual species

distribution models, but, in both cases, the price of including

spatial predictors for improving the fit of the model with the

observations is to hinder their predictive ability (Dormann

et al., 2007). As such, spatial predictors are justifiable outside

the realm of prediction, or when it is not essential to

understand the mechanisms driving the distributions.

CONCLUSIONS

Our implementation of community-level models was unable

to accurately characterize the distribution of European

assemblages of trees. Community-based models accounting

for co-occurrence patterns along environmental space did not

match observed assemblages better than familiar species

distribution models that assume individualistic responses of

species to environmental gradients. It seems clear that many

factors interact to shape compositional variation among

assemblages of trees, and that without approaches that

account mechanistically for such interactions it is difficult

to represent existing community complexities, let alone future

ones. Another question is whether community-based models

help to model the distributions of individual species by

providing information on shared responses of species to

environmental variation. In situations where biological sam-

pling is insufficient, such prospects look promising, but in a

companion paper (Baselga & Araújo, 2009) we did not find

unequivocal evidence in support of this assertion. The

usefulness of community-based models thus remains uncer-

tain, and further research is required to demonstrate their

utility.
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